13 research outputs found

    Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    Get PDF
    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals

    The Generation of Forces and Moments during Visual-Evoked Steering Maneuvers in Flying Drosophila

    Get PDF
    Sideslip force, longitudinal force, rolling moment, and pitching moment generated by tethered fruit flies, Drosophila melanogaster, were measured during optomotor reactions within an electronic flight simulator. Forces and torques were acquired by optically measuring the angular deflections of the beam to which the flies were tethered using a laser and a photodiode. Our results indicate that fruit flies actively generate both sideslip and roll in response to a lateral focus of expansion (FOE). The polarity of this behavior was such that the animal's aerodynamic response would carry it away from the expanding pattern, suggesting that it constitutes an avoidance reflex or centering response. Sideslip forces and rolling moments were sinusoidal functions of FOE position, whereas longitudinal force was proportional to the absolute value of the sine of FOE position. Pitching moments remained nearly constant irrespective of stimulus position or strength, with a direction indicating a tonic nose-down pitch under tethered conditions. These experiments expand our understanding of the degrees of freedom that a fruit fly can actually control in flight

    Enhanced optomotor efficiency by expression of the human gene superoxide dismutase primarily in drosophila motorneurons

    No full text
    Mutation of the human gene superoxide dismutase (hSOD1) triggers the fatal neurodegenerative motorneuron disorder, familial amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). Broad expression of this gene in Drosophila has no effect on longevity or functional senescence. We show here that restricting expression of human SOD1 primarily to motorneurons of Drosophila has significant effects on optomotor efficiency during in-flight tracking of rapidly moving visual targets. Under high-stress workloads with a recursive visual-motion stimulus cycle, young isogenic controls failed to track rapidly changing visual cues, whereas their same-aged hSOD1-activated progeny maintained coordinated in-flight tracking of the target by phase locking to the dynamic visual movement patterns. Several explanations are considered for the observed effects, including antioxidant intervention in motorneurons, changes in signal transduction pathways that regulate patterns of gene expression in other cell types, and expression of hSOD1 in a small set of neurons in the central brain. That hSOD1 overexpression improves sensorimotor coordination in young organisms may suggest possible therapeutic strategies for early-onset ALS in humans.This work was supported by funding from the University of California, Irvin
    corecore