206 research outputs found

    Elastic collapse in disordered isostatic networks

    Full text link
    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power-laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order exp{-bL}. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression, or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order sqrt{p}. For directed networks, elastic moduli are of order exp{-c/p}, indicating the existence of an "isostatic length scale" of order 1/p.Comment: 6 pages, 6 figues, to appear in Europhysics Letter

    Reply to the comment by Jacobs and Thorpe

    Full text link
    Reply to a comment on "Infinite-Cluster geometry in central-force networks", PRL 78 (1997), 1480. A discussion about the order of the rigidity percolation transition.Comment: 1 page revTe

    Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices

    Full text link
    We show that negative of the number of floppy modes behaves as a free energy for both connectivity and rigidity percolation, and we illustrate this result using Bethe lattices. The rigidity transition on Bethe lattices is found to be first order at a bond concentration close to that predicted by Maxwell constraint counting. We calculate the probability of a bond being on the infinite cluster and also on the overconstrained part of the infinite cluster, and show how a specific heat can be defined as the second derivative of the free energy. We demonstrate that the Bethe lattice solution is equivalent to that of the random bond model, where points are joined randomly (with equal probability at all length scales) to have a given coordination, and then subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.

    Combinatorial models of rigidity and renormalization

    Full text link
    We first introduce the percolation problems associated with the graph theoretical concepts of (k,l)(k,l)-sparsity, and make contact with the physical concepts of ordinary and rigidity percolation. We then devise a renormalization transformation for (k,l)(k,l)-percolation problems, and investigate its domain of validity. In particular, we show that it allows an exact solution of (k,l)(k,l)-percolation problems on hierarchical graphs, for kl<2kk\leq l<2k. We introduce and solve by renormalization such a model, which has the interesting feature of showing both ordinary percolation and rigidity percolation phase transitions, depending on the values of the parameters.Comment: 22 pages, 6 figure

    First-order transition in small-world networks

    Full text link
    The small-world transition is a first-order transition at zero density pp of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by ΔpLd\Delta p \sim L^{-d}. Equivalently a ``persistence size'' Lp1/dL^* \sim p^{-1/d} can be defined in connection with finite-size effects. Assuming LpτL^* \sim p^{-\tau}, simple rescaling arguments imply that τ=1/d\tau=1/d. We confirm this result by extensive numerical simulation in one to four dimensions, and argue that τ=1/d\tau=1/d implies that this transition is first-order.Comment: 4 pages, 3 figures, To appear in Europhysics Letter

    Spreading and shortest paths in systems with sparse long-range connections

    Full text link
    Spreading according to simple rules (e.g. of fire or diseases), and shortest-path distances are studied on d-dimensional systems with a small density p per site of long-range connections (``Small-World'' lattices). The volume V(t) covered by the spreading quantity on an infinite system is exactly calculated in all dimensions. We find that V(t) grows initially as t^d/d for t>t^*$, generalizing a previous result in one dimension. Using the properties of V(t), the average shortest-path distance \ell(r) can be calculated as a function of Euclidean distance r. It is found that \ell(r) = r for r<r_c=(2p \Gamma_d (d-1)!)^{-1/d} log(2p \Gamma_d L^d), and \ell(r) = r_c for r>r_c. The characteristic length r_c, which governs the behavior of shortest-path lengths, diverges with system size for all p>0. Therefore the mean separation s \sim p^{-1/d} between shortcut-ends is not a relevant internal length-scale for shortest-path lengths. We notice however that the globally averaged shortest-path length, divided by L, is a function of L/s only.Comment: 4 pages, 1 eps fig. Uses psfi

    Isostatic phase transition and instability in stiff granular materials

    Full text link
    In this letter, structural rigidity concepts are used to understand the origin of instabilities in granular aggregates. It is shown that: a) The contact network of a noncohesive granular aggregate becomes exactly isostatic in the limit of large stiffness-to-load ratio. b) Isostaticity is responsible for the anomalously large susceptibility to perturbation of these systems, and c) The load-stress response function of granular materials is critical (power-law distributed) in the isostatic limit. Thus there is a phase transition in the limit of intinitely large stiffness, and the resulting isostatic phase is characterized by huge instability to perturbation.Comment: RevTeX, 4 pages w/eps figures [psfig]. To appear in Phys. Rev. Let

    Yard-Sale exchange on networks: Wealth sharing and wealth appropriation

    Full text link
    Yard-Sale (YS) is a stochastic multiplicative wealth-exchange model with two phases: a stable one where wealth is shared, and an unstable one where wealth condenses onto one agent. YS is here studied numerically on 1d rings, 2d square lattices, and random graphs with variable average coordination, comparing its properties with those in mean field (MF). Equilibrium properties in the stable phase are almost unaffected by the introduction of a network. Measurement of decorrelation times in the stable phase allow us to determine the critical interface with very good precision, and it turns out to be the same, for all networks analyzed, as the one that can be analytically derived in MF. In the unstable phase, on the other hand, dynamical as well as asymptotic properties are strongly network-dependent. Wealth no longer condenses on a single agent, as in MF, but onto an extensive set of agents, the properties of which depend on the network. Connections with previous studies of coalescence of immobile reactants are discussed, and their analytic predictions are successfully compared with our numerical results.Comment: 10 pages, 7 figures. Submitted to JSTA

    Rigidity percolation in a field

    Full text link
    Rigidity Percolation with g degrees of freedom per site is analyzed on randomly diluted Erdos-Renyi graphs with average connectivity gamma, in the presence of a field h. In the (gamma,h) plane, the rigid and flexible phases are separated by a line of first-order transitions whose location is determined exactly. This line ends at a critical point with classical critical exponents. Analytic expressions are given for the densities n_f of uncanceled degrees of freedom and gamma_r of redundant bonds. Upon crossing the coexistence line, n_f and gamma_r are continuous, although their first derivatives are discontinuous. We extend, for the case of nonzero field, a recently proposed hypothesis, namely that the density of uncanceled degrees of freedom is a ``free energy'' for Rigidity Percolation. Analytic expressions are obtained for the energy, entropy, and specific heat. Some analogies with a liquid-vapor transition are discussed. Particularizing to zero field, we find that the existence of a (g+1)-core is a necessary condition for rigidity percolation with g degrees of freedom. At the transition point gamma_c, Maxwell counting of degrees of freedom is exact on the rigid cluster and on the (g+1)-rigid-core, i.e. the average coordination of these subgraphs is exactly 2g, although gamma_r, the average coordination of the whole system, is smaller than 2g. gamma_c is found to converge to 2g for large g, i.e. in this limit Maxwell counting is exact globally as well. This paper is dedicated to Dietrich Stauffer, on the occasion of his 60th birthday.Comment: RevTeX4, psfig, 16 pages. Equation numbering corrected. Minor typos correcte
    corecore