342 research outputs found

    Availability of Educational Opportunities for Negroes in Hunt County in 1946-1947

    Get PDF
    It is hoped that this study might, by giving an accurate account of the present situation, arouse the school leaders to devise means of improving existing conditions. It was not the intent of the writer to point out the faults of the school system In order to criticize favorably or unfavorably those in charge of the administration. Reference to conditions in any of the schools studied could not be placed entirely upon the resent administration. This study embraces all of the Elementary and Secondary schools in Hunt County. But is limited to the Negro schools under the public school system. This study is limited to the year 1946-1947 in order to get an actual picture of conditions as they existed before the Standardization Law was passed, which forced some schools to make needed improvements in curriculum, teaching personnel, equipment, and the physical plant. The writer began this study during the year 1946-1947 and hopes with this year as a base to gauge the amount of progress that has been made to the present. The writer has set for himself this task, namely, to study the educational opportunities available to Negro youth in Hunt County with respect to both quantity and quality abailable as of the school year, 1946-1947

    First Observation of 15Be

    Get PDF
    The neutron-unbound nucleus 15Be was observed for the first time. It was populated using neutron transfer from a deuterated polyethylene target with a 59 MeV/u 14Be beam. Neutrons were measured in coincidence with outgoing 14Be particles and the reconstructed decay energy spectrum exhibits a resonance at 1.8(1) MeV. This corresponds to 15Be being unbound by 0.45 MeV more then 16Be thus significantly hindering the sequential two-neutron decay of 16Be to 14Be through this state

    Spectroscopy of neutron-unbound 27,28^{27,28}F

    Full text link
    The ground state of 28^{28}F has been observed as an unbound resonance 2202\underline{2}0 keV above the ground state of 27^{27}F. Comparison of this result with USDA/USDB shell model predictions leads to the conclusion that the 28^{28}F ground state is primarily dominated by sdsd-shell configurations. Here we present a detailed report on the experiment in which the ground state resonance of 28^{28}F was first observed. Additionally, we report the first observation of a neutron-unbound excited state in 27^{27}F at an excitation energy of 2500(220)25\underline{0}0 (2\underline{2}0) keV.Comment: 10 pages, 11 figures, Accepted for publication in Phys. Rev.

    Observation of a low-lying neutron-unbound state in 19C

    Full text link
    Proton removal reactions from a secondary 22N beam were utilized to populate unbound states in neutron-rich carbon isotopes. Neutrons were measured with the Modular Neutron Array (MoNA) in coincidence with carbon fragments. A resonance with a decay energy of 76(14) keV was observed in the system 18C+n corresponding to a state in 19C at an excitation energy of 653(95)keV. This resonance could correspond to the first 5/2+ state which was recently speculated to be unbound in order to describe 1n and 2n removal cross section measurements from 20C.Comment: accepted for publication in Nucl. Phys.

    Exploring the Low-ZZ Shore of the Island of Inversion at N=19N = 19

    Get PDF
    The technique of invariant mass spectroscopy has been used to measure, for the first time, the ground state energy of neutron-unbound 28F,^{28}\textrm{F}, determined to be a resonance in the 27F+n^{27}\textrm{F} + n continuum at 220(50)2\underline{2}0 (\underline{5}0) keV. States in 28F^{28}\textrm{F} were populated by the reactions of a 62 MeV/u 29Ne^{29}\textrm{Ne} beam impinging on a 288 mg/cm2\textrm{mg/cm}^2 beryllium target. The measured 28F^{28}\textrm{F} ground state energy is in good agreement with USDA/USDB shell model predictions, indicating that pfpf shell intruder configurations play only a small role in the ground state structure of 28F^{28}\textrm{F} and establishing a low-ZZ boundary of the island of inversion for N=19 isotones.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Three-body correlations in the ground-state decay of 26O

    Full text link
    Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron configuration and 2n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of O26, including the decay mechanism and ground-state resonance energy. Method: O26 was produced in a one-proton knockout reaction from F27 and the O24+n+n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the O26 ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body correlations were found to be sensitive to the resonance energy of O26. A 1{\sigma} upper limit of 53 keV was extracted for the ground-state resonance energy of O26. Conclusions: Future attempts to measure the three-body correlations from the ground-state decay of O26 will be very challenging due to the need for a precise measurement of the O24 momentum at the reaction point in the target

    Search for unbound 15Be states in the 3n+12Be channel

    Get PDF
    15Be is expected to have low-lying 3/2+ and 5/2+ states. A first search did not observe the 3/2+ [A. Spyrou et al., Phys. Rev. C 84, 044309 (2011)], however, a resonance in 15Be was populated in a second attempt and determined to be unbound with respect to 14Be by 1.8(1) MeV with a tentative spin-parity assignment of 5/2+ [J. Snyder et al., Phys. Rev. C 88, 031303(R) (2013)]. Search for the predicted 15Be 3/2+ state in the three-neutron decay channel. A two-proton removal reaction from a 55 MeV/u 17C beam was used to populate neutron-unbound states in 15Be. The two-, three-, and four-body decay energies of the 12Be + neutron(s) detected in coincidence were reconstructed using invariant mass spectroscopy. Monte Carlo simulations were performed to extract the resonance and decay properties from the observed spectra. The low-energy regions of the decay energy spectra can be described with the first excited unbound state of 14Be (E_x=1.54 MeV, E_r=0.28 MeV). Including a state in 15Be that decays through the first excited 14Be state slightly improves the fit at higher energies though the cross section is small. A 15Be component is not needed to describe the data. If the 3/2+ state in 15Be is populated, the decay by three-neutron emission through 14Be is weak, less than or equal to 11% up to 4 MeV. In the best fit, 15Be is unbound with respect to 12Be by 1.4 MeV (unbound with respect to $14Be by 2.66 MeV) with a strength of 7%.Comment: 6 pages, 5 figures, accepted in Physical Review

    Further Insights into the Reaction Be14(CH2,X)10He

    Full text link
    A previously published measurement of the reaction of a 59 MeV/nucleon 14Be beam on a deuterated polyethylene target was further analyzed to search for 12He as well as initial state effects in the population of the 10He ground state. No evidence for either was found. A lower limit of about 1 MeV was determined for a possible resonance in 12He. In addition, the three-body decay energy spectrum of 10He could not be described by a reaction mechanism calculation based on the halo structure of the initial 14Be assuming a direct α-particle removal reaction
    corecore