2 research outputs found

    Exoplanet host-star properties: The active environment of exoplanets

    Full text link
    The primary objectives of the ExoplANETS-A project are to: Establish new knowledge on exoplanet atmospheres; establish new insight on influence of the host star on the planet atmosphere; disseminate knowledge, using online, web-based platforms. The project, funded under the EU's Horizon-2020 programme, started in January 2018 and has a duration ∼3 years. We present an overview of the project, the activities concerning the host stars and some early results on the host stars

    <sup>15</sup>NH3 in the atmosphere of a cool brown dwarf

    Full text link
    Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical1,2. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios3. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity4. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System5–7. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks8,9. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope10, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets
    corecore