8 research outputs found

    Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100

    Get PDF
    This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics.Published versionResearch at Bristol is supported by Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Program (DTP), EPSRC Fellowship UMPIRE (EP/T004991/1). Research at Catania is sponsored by Piano della Ricerca 2016-2018 linea di Intervento 2 of DMI, by MISE - PON I&C 2014-2020, ENIGMA project (CUP: B61B19000520008) and by MIUR AIM - Attrazione e Mobilita Internazionale Linea 1 - AIM1893589 - CUP E64118002540007

    VISION: a video and image dataset for source identification

    Get PDF
    Abstract Forensic research community keeps proposing new techniques to analyze digital images and videos. However, the performance of proposed tools are usually tested on data that are far from reality in terms of resolution, source device, and processing history. Remarkably, in the latest years, portable devices became the preferred means to capture images and videos, and contents are commonly shared through social media platforms (SMPs, for example, Facebook, YouTube, etc.). These facts pose new challenges to the forensic community: for example, most modern cameras feature digital stabilization, that is proved to severely hinder the performance of video source identification technologies; moreover, the strong re-compression enforced by SMPs during upload threatens the reliability of multimedia forensic tools. On the other hand, portable devices capture both images and videos with the same sensor, opening new forensic opportunities. The goal of this paper is to propose the VISION dataset as a contribution to the development of multimedia forensics. The VISION dataset is currently composed by 34,427 images and 1914 videos, both in the native format and in their social version (Facebook, YouTube, and WhatsApp are considered), from 35 portable devices of 11 major brands. VISION can be exploited as benchmark for the exhaustive evaluation of several image and video forensic tools

    Impaired respiratory function reduces haemoglobin oxygen affinity in COVID-19

    No full text
    corecore