76 research outputs found

    Criticality and Superfluidity in liquid He-4 under Nonequilibrium Conditions

    Full text link
    We review a striking array of recent experiments, and their theoretical interpretations, on the superfluid transition in 4^4He in the presence of a heat flux, QQ. We define and evaluate a new set of critical point exponents. The statics and dynamics of the superfluid-normal interface are discussed, with special attention to the role of gravity. If QQ is in the same direction as gravity, a self-organized state can arise, in which the entire sample has a uniform reduced temperature, on either the normal or superfluid side of the transition. Finally, we review recent theory and experiment regarding the heat capacity at constant QQ. The excitement that surrounds this field arises from the fact that advanced thermometry and the future availability of a microgravity experimental platform aboard the International Space Station will soon open to experimental exploration decades of reduced temperature that were previously inaccessible.Comment: 16 pages, 9 figures, plus harvard.sty style file for references Accepted for publication in Colloquia section of Reviews of Modern Physic

    Liquid 4He near the superfluid transition in the presence of a heat current and gravity

    Full text link
    The effects of a heat current and gravity in liquid 4He near the superfluid transition are investigated for temperatures above and below T_lambda. We present a renormalization-group calculation based on model F for the Green's function in a self-consistent approximation which in quantum many-particle theory is known as the Hartree approximation. The approach can handle a zero average order parameter above and below T_lambda and includes effects of vortices. We calculate the thermal conductivity and the specific heat for all temperatures T and heat currents Q in the critical regime. Furthermore, we calculate the temperature profile. Below T_lambda we find a second correlation length which describes the dephasing of the order parameter field due to vortices. We find dissipation and mutual friction of the superfluid-normal fluid counterflow and calculate the Gorter-Mellink coefficient A. We compare our theoretical results with recent experiments.Comment: 26 pages, 9 figure

    The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    Get PDF
    Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are not appropriate for use under existing carbon offset standards and most have not been field tested. Results This paper presents a pixel-based forest stratification method that uses both ALS and optical remote sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA, USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-based inventory, and provides a powerful tool for future management planning. This approach also details a method of determining the optimum pixel size to best partition a forest. Conclusions The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data acquisition costs can be kept low on a per acre basis

    Plot, stand, and cover-type aggregation effects on projections with an individual tree based stand growth model

    No full text

    Spatial patterns in species-rich sclerophyll shrublands of southwestern Australia

    Get PDF
    Question: The drivers of spatial patterning among plant species and the implications of those patterns for the structure and function of plant communities are of ongoing interest and debate. Here we explore the spatial patterning shown by individual species in species-rich plant communities. We (1) compare the levels of aggregation in these communities to those observed in other species-rich communities, in particular tropical rain forests, and (2) consider how abiotic conditions might influence the levels of aggregation observed. Location: We describe the spatial structure of four species-rich Mediterranean-type shrubland communities near Eneabba, Western Australia. The four sites each contain > 10 000 plants and up to 113 species, and differ in substrate-type, species richness and composition. Methods: We analysed the spatial patterning of all species with more than 20 individuals (233 species patterns), and used point process models for aggregated patterns to separate first-order gradient effects from second-order clustering. Results: Aggregated distributions were most common at all sites, but especially at the site with the highest resource availability and heterogeneity and lowest species richness. APoisson cluster process best described the majority of aggregated species, suggesting that local interactions drive fine-scale patterns in these communities. Conclusions: As with many previous studies, we found that most species showed strong local aggregation. The proportion of species showing aggregation was less than has been described in species-rich tropical rainforests but was higher than observed in many temperate plant communities. The highest proportion of aggregated species was seen at the most resource-abundant site; this is in direct contrast to conceptual models that suggest that competition should be weakest, and aggregation most prevalent, in the most resource-limited sites
    corecore