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Abstract
Question: The drivers of spatial patterning among plant spe-
cies and the implications of those patterns for the structure 
and function of plant communities are of ongoing interest 
and debate. Here we explore the spatial patterning shown by 
individual species in species-rich plant communities. We (1) 
compare the levels of aggregation in these communities to 
those observed in other species-rich communities, in particular 
tropical rain forests, and (2) consider how abiotic conditions 
might influence the levels of aggregation observed.
Location: We describe the spatial structure of four species-rich 
Mediterranean-type shrubland communities near Eneabba, 
Western Australia. The four sites each contain > 10 000 plants 
and up to 113 species, and differ in substrate-type, species 
richness and composition.
Methods: We analysed the spatial patterning of all species with 
more than 20 individuals (233 species patterns), and used point 
process models for aggregated patterns to separate first-order 
gradient effects from second-order clustering. 
Results: Aggregated distributions were most common at all 
sites, but especially at the site with the highest resource avail-
ability and heterogeneity and lowest species richness.  A Poisson 
cluster process best described the majority of aggregated spe-
cies, suggesting that local interactions drive fine-scale patterns 
in these communities. 
Conclusions: As with many previous studies, we found that 
most species showed strong local aggregation. The proportion 
of species showing aggregation was less than has been described 
in species-rich tropical rainforests but was higher than observed 
in many temperate plant communities. The highest proportion 
of aggregated species was seen at the most resource-abundant 
site; this is in direct contrast to conceptual models that suggest 
that competition should be weakest, and aggregation most 
prevalent, in the most resource-limited sites.

Keywords: Aggregation; Point process model; Soil nutrients; 
Species richness.

Abbreviations: CAI = Community Aggregation Index; CvM 
= Cramer von Mises; CSR = Complete spatial randomness; 
HPP = Homogeneous Poisson process; IPP = Inhomogeneous 
Poisson process;  PCF = Pair corelation function; PCP = Poisson 
cluster process; TRF = Tropical rain forest. 

Introduction

Spatial pattern is playing an increasing role in con-
temporary theoretical ecology: e.g. as a determinant of 
competitive interactions, patterns of species diversity, 
and species-area relationships. Arguments drawn from 
observed spatial patterns are employed by both sides 
of the current neutral theory debate, and spatial pattern 
may provide empirical data relevant to its determination 
(Holyoak & Loreau 2006). Interest in spatial pattern in 
plant communities has also heightened with the devel-
opment and spread of improved analytical methods of 
spatial analysis (Fortin & Dale 2005).

Spatial pattern in the fine-scale distribution of 
individuals within and among species is quantified as 
deviation from randomness towards aggregation or seg-
regation (or regularity) at a given scale. Typically, plant 
communities include some species with distributions 
that are indistinguishable from random, most species are 
aggregated and a small minority show a regular distri-
bution. Segregation of conspecifics has been observed 
for shrubs in some semi-arid and arid ecosystems (e.g. 
Phillips & MacMahon 1981; Schenk et al. 2003). Janzen 
(1970) proposed that a regular distribution of individu-
als facilitates species co-existence in tropical rain forest 
(TRF) communities, although field and experimental 
evidence for this is equivocal (Hyatt et al. 2003).

Observed aggregation can arise from either the first-
order (gradient) or second-order (true clustering) proper-
ties of the pattern, or a combination of the two (Cressie 
1993; Diggle 2003). Operationally, these two types of 
aggregation may be described as large and small-scale 
spatial trends. First-order aggregation arises from variation 
in the density (or intensity) of stems across the mapped 
community; it is essentially of abiotic origin (e.g. in 
response to a gradient of soil conditions) and does not 
imply interactions between the stems (points). Conversely, 
second-order aggregation results from interactions be-
tween individuals, and could be biotic (e.g. via competition 
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or local seed dispersal) and/or abiotic (e.g. nodes of high 
soil nutrients) in origin. In a given plant community both 
first- and second-order effects may be responsible for any 
spatial patterning present. Thus, what is loosely termed 
‘aggregation’ comprises two fundamentally different 
patterns, which the usual null model, of complete spatial 
randomness (CSR) as a homogeneous Poisson process, 
cannot discriminate between. Statistically the distinction 
between first-order and second-order aggregation is even 
more problematic as non-homogeneous Poisson processes 
can mimic cluster processes. Nevertheless, ecological 
studies rarely use null models other than CSR to go be-
yond simply describing species patterns as ‘aggregated’ 
(Wiegand & Moloney 2004). 

Several theoretical studies have suggested that spatial 
patterning can facilitate the persistence of competitively 
inferior species in plant communities (Amarasekare 
2003); these theoretical models have recently been 
supported by experimental and field-based empirical 
studies. Stoll & Prati (2001) explored how spatial pat-
tern mediates competitive interactions by using mixtures 
of four annual species. They found that survival and 
fecundity of weaker competitors increased in a high-
density aggregated treatment relative to random mixture 
and low-density aggregated treatments. Building on 
Stoll & Prati (2001), Monzeglio & Stoll (2005) noted 
that spatial aggregation, which promotes intraspecific 
over interspecific interactions, can result in inferior 
competitors having higher vegetative and reproductive 
biomass relative to randomised patterns. Likewise, 
Turnbull et al. (2007) demonstrated, using neighbour-
hood models parameterised from field experiments, 
that spatial pattern can promote species coexistence 
as it benefits inferior competitors (especially those 
with small seeds). Persistence of competitively infe-
rior species in patches where competitive intensity is 
low also acts to amplify aggregated patterns (Davis 
et al. 2005; Moeur 1993). Following on from this 
idea, Lehman & Tilman (1997) predict a hierarchy of 
aggregation reflecting the competitive hierarchy in a 
community. Menge & Sutherland (1987) and Collins 
& Khlar (1991) additionally propose that competition 
should be weakest, and aggregation most prevalent, in 
resource-limited sites, but few empirical studies have 
explored the relationship between spatial pattern and 
resource availability.

Studies comprehensively exploring fine-scale spatial 
pattern of many species or in species-rich communities 
are scarce outside of (TRF) communities. In species-rich 
TRF communities, almost all tree species show intense 
aggregation at fine scales: 99% of 1768 species were 
aggregated at distances of 0-10 m in six globally distributed 
50-ha plots, up to 100% in one plot (Condit et al. 2000), and 
more than 90% of species were aggregated in communities 

in Central America and northeastern India (Upadhaya et al. 
2003). Conversely, Armesto et al. (1986) and San José et al. 
(1991) found that 40-50% of species were aggregated in less 
species-rich temperate and savanna communities. Several 
studies have considered the spatial patterning of individual 
species (e.g. Haase et al. 1997) or a small subset of dominant 
species (e.g. Schurr et al. 2004) in shrubland communities. 
While the diversity of the shrubland systems we consider 
here has been compared with that of TRF in the past (Lamont 
et al. 1977), they differ in some important ways from TRF 
ecosystems. The physical factors that control the success 
of individual plants differ between sclerophyll shrublands, 
where water supply is limiting and light is abundant, and 
TRF, where the reverse is true. Likewise, the types of 
processes that may contribute to spatial patterning, such 
as tree-falls, fire and herbivory, also differ. Nevertheless, 
the fundamental biotic drivers of spatial pattern - highly-
localised dispersal and intra- and inter-specific competition 
between plants - are likely to be the same, irrespective of 
the diversity of the systems being considered.   

Here we describe the spatial structure of vegetation 
in four fire-prone, species-rich Mediterranean-climate 
shrubland (‘kwongan’) communities on low nutrient 
sands near Eneabba, Western Australia. We tested the 
following hypotheses:

1. As in other species-rich plant communities, the 
majority of species at each site will be aggregated, a few 
will follow a distribution close to CSR, and fewer still 
will show a regular pattern. 

2. The proportion of species aggregated at each site 
will be predictable on the basis of that site’s soil nutrient 
status, with less nutrient-rich sites showing higher levels 
of aggregation (as predicted by Collins & Klahr 1991; 
Menge & Sutherland 1987). 

3. Since the sites were chosen for their apparent 
environmental uniformity, the majority of aggregated 
species’ patterns will be explained best by a cluster rather 
than gradient model.

Our methodological approach also allows us to ex-
plore the efficacy of various point process models to dis-
tinguish gradient (first order) and cluster (second order) 
patterns of aggregation in point distribution patterns. 

Methods

Vegetation 

Field data were collected for four shrubland types, 
associated with different substrates, in kwongan near 
Eneabba, 270-330 km north of Perth, Western Australia 
(Table 1). These communities are highly diverse. Hnatiuk 
& Hopkins (1981) reported species richness of up to 130 
species per 100 m2 in the study area (compared with up 
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to 300 species per ha in some TRF communities; Lie-
berman & Lieberman 2007). They also described clear 
differences in species composition and structure for low 
sandy dunes and adjacent flatlands, associated with the 
differences in depth of unconsolidated acid sands over 
a less permeable lateritic substrate. Enright & Lamont 
(1992) showed that the absence of tall shrubs (> 1 m) 
and small trees (3-5 m) from the flatlands was primarily 
due to limited water availability in the low ‘swales’ over 
summer. These shrublands are fire-prone with a mean 
fire-return period of 13 years over the last 30 years (Miller 
et al. 2007). Many species show adaptations to cope 
with fire, including the ability to regrow vegetatively, 
and seed-based adaptations including fire-stimulated 
germination of soil-stored seeds and release of canopy-
stored seed crops (Enright & Lamont 1989). 

Sites were located in tall kwongan on deep acid 
sands (Crest) and calcareous sands (Limestone), and 
low kwongan on shallow acid sands (Swale) and on 
sands shallowly overlying lateritic gravels (Laterite), 
to provide four high-diversity data sets with contrast-
ing community structure and composition. The sites 
were last burned at least 12 years prior to mapping and 
represented mature phase vegetation with cover > 70%. 
The data consisted of the species identity, x, y location 
and size (height, canopy diameter) for each individual 
of all species within the plot (excluding plants < 5 cm 
‘crown’ diameter or height, geophytes and annuals). Due 
to differences in plant size and density between sites, the 
Swale and Laterite plots were each 30 m × 30 m, while the 
Crest and Limestone plots were each 40 m × 40 m. The 
methods used are described in more detail in Chiarucci et 
al. (2003). Individuals in the Myrtaceae, Proteaceae and 
Restionaceae dominated the four sites numerically, with 
the Cyperaceae, Dilleniaceae and Ericaceae (formerly 
Epacridaceae) also prominent; abundances of species 
ranged over four orders of magnitude. 

Soils 

Surface soil samples were collected from 90 random 
locations within each of the four plots to quantify soil 
nutrient levels and soil-stored seed (Enright et al. 2007 
provide full details of the methods used). At each location 
a single 14 cm × 14 cm × 5 cm (depth) soil sample was 
removed using a custom-built sampler. Samples were 
dried at 40 ºC for 48 h, thoroughly mixed and two 10-g 
sub-samples removed for analysis. One sub-sample was 
submitted to CSBP-Wesfarmers Pty Ltd (Perth, Australia) 
for standard analysis including Nitrate N, Ammonium N, 
available P, S and K, EC and pH. The second sub-sample 
was analysed at Curtin University of Technology, Perth, 
for exchangeable cations (Na, Ca, Mg K) using the am-
monium acetate leaching method (Rayment & Higginson 

1992). Following Tilman (1982), nutrient availability was 
quantified by using mean values and the spatial variability 
in nutrient availability by using the coefficient of varia-
tion (CV). We used Moran’s I and Geary’s C (Dale 1999) 
to test for spatial autocorrelation in the concentration of 
the soil nutrients up to distances of 10 m. Whereas the 
CV describes variability in the soil nutrients, the spatial 
autocorrelation measures quantify the extent to which 
this variability is spatially structured.

Spatial analysis

Measures of spatial pattern

The distribution of stems at each site was analysed (1) 
pooled over all species, and (2) on a species-by-species 
basis. We used Ripley’s K-function (Diggle 2003), and 
the pair correlation function (PCF, g(r) Stoyan & Stoyan 
1994) to characterise the spatial patterns of stems at 
each site; note that the PCF has variously been called 
the neighbourhood density function (NDF - Condit 
et al. 2000; Perry et al. 2006) and the O-ring statistic 
(Wiegand & Moloney 2004). Due to its non-cumulative 
nature, the PCF is arguably more useful than the more 
commonly used K-function as it describes patterns at, 
rather than up to, specific distances (Perry et al. 2006). 
The average distance at which the PCF first suggests CSR 
is a measure of local patterning (cluster size). However, 
the K-function is useful for exploring how well a given 
event set conforms to a specific point process model 
(Stoyan & Penttinen 2000). Thus, we use the PCF to 
describe patterns and the K-function to explore how well 
alternative point-process models characterise them. We 
also used abundance-weighted averages of the PCF (the 
CAI – the community aggregation index, sensu Davis 
et al. 2005) at distances of 0.0-0.5 m and 0.0-1.0 m to 
provide a measure of the strength of departure from CSR 
for groups of species.   

The K-function totals the number of points within 
some distance (r) of a ‘focal point’ (plant) and is cu-
mulative:
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where: )(ˆ rK  = the empirical estimate of K at distance 
r, A = the area of the plot, n is the number of points, dij 
is the distance between points i and j and dij(r) = 1 if dij 
≤ r and dij(r) = 0 if dij > r and ωij is the edge-correction 
weighting.

We use the linearisation and variance-stabilising 
correction of the K-function, L(r):
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Under CSR, L(r) ≡ 0; aggregated patterns show L(r) > 
0 and regular patterns L(r) < 0.

The PCF is similar to the K-function but uses annuli 
rather than closed circles (i.e. it is the derivative of the 
K-function), and so is non-cumulative (Stoyan & Pent-
tinen 2000): 
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Following Stoyan & Stoyan (1994) we estimate g(r) using 
an Epachenikov kernel (k) with bandwidth h:
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where: h = 0 15.
λ

, and λ is intensity (density).

Under CSR, g(r) ≡ 1.0; aggregated patterns show 
g(r) > 1.0 and regular patterns g(r) < 1.0.

The edge corrections described by Goreaud (1999) 
were used, and we calculated L(r) and g(r) at 0.1 m 
intervals up to a distance of 10 m. 

Null models

To characterise the observed spatial patterns we gen-
erated simulation envelopes using three null models: 

Homogeneous Poisson process (HPP; complete spa-
tial randomness, CSR) – i.e. there is neither first-order 
nor second-order pattern in the distribution of stems; 
CSR is defined solely by λ, and λ is assumed constant 
(i.e. homogeneous) within the plot. 

Inhomogeneous Poisson process (IPP) – first-order 
departure from CSR implies variation in λ across the plot, 
but not interactions between events. For each species we 
modelled λ as a log-quadratic function of the Cartesian 
coordinates (see Diggle 2003, p. 105), with parameter 

values estimated via maximum likelihood:

log( ),λ α β β γ γ δx x x x x x x x
1 2 1 1 2 2 1 1

2
2 2

2
1 2= + + + + + (5)

where: x1 and x2 are Cartesian co-ordinates.
Poisson Cluster process (PCP) – second-order 

departures from CSR do imply interactions between 
points (events); i.e. the probability of a point being 
observed at a location is affected by the locations of 
other points. While there are other second-order point 
process models of aggregation (Diggle 2003), the PCP 
model has been used in ecological studies (e.g. Plotkin 
et al. 2000; Stamp & Lucas 1990) yielding parameters 
that are easily ecologically interpreted. In PCP models, 
clusters of ‘offspring’ events are produced using a radi-
ally symmetric Gaussian distribution (given by Eq. 6), 
centred on ‘parent’ events:  

h x x x x( , ) exp1 2
2 1 1

2
2
2

22
2

= ( ) ⋅ − +





−
πσ

σ (6)

The PCP is defined by the intensity of the parent’s 
Poisson process (ρ) and the variance of the Gaussian dis-
tribution of parent-child distances (σ2). The mean squared 
distance from ‘offspring’ events to their ‘parents’ is 2σ2; 
thus, ρ measures density of patches and σ patch size (note 
that we imply no ecological meaning by using the terms 
parent and offspring). When simulating the PCP we used 
a buffer of two SD of the patch size for the species being 
assessed so that parents outside the plot could contribute 
offspring within the plot – this represents the effects of 
the plot edges ‘slicing through’ clusters.

We fit the PCP models following the methods outlined 
in Diggle (2003, p. 86-87); theoretically, a PCP with 
given ρ and σ yields:

K r r rPCP( ) exp( )= + ⋅ − −
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We estimated ρ and σ by minimizing D(θ):

Table 1. General properties of the four vegetation sample sites near Eneabba, Western Australia, alongside rank order of various 
biophysical descriptors of each site and the observed spatial patterning, from highest (1) to lowest (4). N is total number of indivi-
duals sampled, Density is mean number of individuals per m2, Species is total number of species sampled [including those with n 
< 20], Sole site = number of species found only at that site (of the four surveyed), Infrequent = number of species with fewer than 
20 individuals, and α is Fisher’s alpha diversity (see Rosenzweig 1995).

Site N Density   Sole Frequent Richness α Soil nutrient Water
  (inds.m–2) Species site (n > 20) rank (S) rank (α) resources availability Productivity Pattern†

Limestone 10 674 6.7 74 45 44 4 (74) 4 (10.7) 1 2 1 1
Laterite 13 663 15.2 93 20 56 3 (93) 3 (13.6) 2 4 4 3
Crest 10 530 6.6 113 48 59 1 (113) 1 (16.8) 3.5 1 2 2
Swale 12 815 14.2 104 23 75 2 (104) 2 (15.5) 3.5 3 3 4

† In terms of proportion of species showing non-random distributions. 
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2 (8)

where: c is a tuning constant, for which we use a value 
of 0.25, as suggested by Diggle (2003) for aggregated 
patterns. 

The parameters of the PCP model (σ and ρ) can be 
used to provide information about the patch structure 
in the sampled area (Plotkin et al. 2000; Stamp & Lucas 
1990). The number of individuals present in patches of 
species i can be estimated from ρi (the density of patches of 
species i) and ni (the abundance of species i), and the mean 
radius of clumps of species i can be estimated from 
σ πi ⋅ ( / )2 (9)

 
Assessment of significance and model fit

Simulation envelopes were calculated at α = 0.01 
on the basis of 499 Monte Carlo simulations. To assess 
deviation from the various null hypotheses we used the 
Cramer von Mises (CvM) statistic, which is the sum of 
the squared deviation of the observed from the expected 
across all distances (Perry et al. 2006); for the HPP, IPP 
and PCP we used the mean of the Monte Carlo simula-
tions as the expected value. Although the theoretical value 
of the HPP is known (zero at all distances) we used the 
mean of the Monte Carlo simulations because the edge-
corrected estimates of L(r) are not unbiased (although we 
found using the theoretical estimate of L(r) under CSR 
[zero] produced the same results in a qualitative sense). 
We calculated the CvM from the estimates of L(r). If a 

species’ pattern deviated significantly from CSR, as as-
sessed on the basis of the significance of the curvewise 
CvM test using CSR as the null hypothesis and visual 
inspection, the CvM statistics of the IPP and PCP models 
were compared, with the lowest being deemed the ‘best 
fit’. SpPack (Perry 2004) and the R libraries Splancs 
(Rowlingson & Diggle 1993) and Spatstat (Baddeley & 
Turner 2005) were used for all statistical analyses. 

Results

Soils

There were clear differences in soil properties (Ca, 
Mg and K at Crest, Limestone and Swale, and total N and 
P at all sites) between sites. Limestone has considerably 
higher nutrient availability for all major plant nutrients 
except P, and shows greater variability in nutrient avail-
ability than the other sites. Laterite shows intermediate 
levels of the measured soil nutrients, while Crest and Swale 
show the lowest nutrient levels and spatial heterogeneity. 
There are significant global differences between all sites 
(Kruskal-Wallis tests with Bonferroni corrected p-values; p 
<< 0.01). The general hierarchy of nutrient levels and their 
spatial heterogeneity can be summarised as: Limestone → 
Laterite → Crest ≈ Swale (Table 1). Spatial autocorrelation 
tests using Moran’s I and Geary’s C showed no evidence 
for strong or systematic spatial structuring for any of the 
nutrients (Ca, Mg, P, K and total N) tested at any of the 
sites for distances up to 10 m (Table 2).

Table 2. Summary of spatial autocorrelation analyses for Ca, Mg, P, K and total N at each of the four sites.  Analyses consider 
distances up to 10 m using a 1-m step interval. We used α = 0.01 and the p-values shown here are uncorrected for multiple tests; I 
= Moran’s I ( –1 ≤ I ≤ 1) and C = Geary’s C (0 ≤ C ≤ 2). 

Site Nutrient I range† p-range (I) Sign. distances (m) C-range† p-range (C) Sign. distances (m)
       
Crest Ca –0.15 - 0.31 0.12 - 0.87 – 0.9 - 1.41 0.07 - 0.96 -
 Mg –0.07 - 1.02 < 0.01 - 0.88 1, 8, 9 0.58 - 0.97 0.03 - 0.85 -
 K –0.11 - 0.71 < 0.01 - 0. 95 4 0.54 - 1.11 0.02 - 0.67 -
 Total N –0.07 - 0.37 0.03 - 0.99 – 0.58 - 1.11 0.06 - 0.88 -
 P –0.40 - 0.21 0.05 - 0.89 – 0.60 - 1.51 0.02 - 0.92 -
Laterite Ca –0.33 - 0.27 < 0.01 - 0.90 4, 7 0.19 - 1.89 < 0.01 - 0.85 7, 8
 Mg –0.04 - 0.57 0.04 - 0.78 – 0.37 - 1.09 0.03 - 0.83 -
 K –0.16 - 0.21 0.01 - 0.85 – 0.74 - 1.20 0.10 - 0.90 -
 Total N –0.21 - 0.48 0.13 - 0.89 – 0.79 - 1.13 0.11 - 0.75 -
 P –0.27 - 1.12 < 0.01 - 0.87 1 0.7 - 6.0 < 0.01 - 0.81 1, 3
Limestone Ca –0.07 - 0.18 0.03 - 0.72 – 0.44 - 2.53 < 0.01 - 0.33 2, 3, 6, 10
 Mg –0.04 - 0.12 0.38 - 0.98 – 0.13 - 1.99 < 0.01 - 0.54 2, 4
 K –0.22 - 0.29 0.06 - 0.84 – 0.29 - 1.58 0.03 - 0.87 -
 Total N –0.12 - 0.26 0.02 - 0.99 – 0.66 - 1.69 0.04 - 0.71 -
 P –0.07 - 0.48 <0.01 - 0.84 3 0.61 - 1.09 0.02 - 0.94 -
Swale Ca –0.24 - 0.07 0.11 - 0.96 – 0.82 - 1.20 0.15 - 0.94 -
 Mg –0.12 - 0.07 0.36 - 0.99 – 0.52 - 1.94 <0.01 - 0.99 2, 4
 K –0.16 - 0.09 0.28 - 0.92 – 0.73 - 0.98 0.09 - 0.87 -
 Total N –0.09 - 0.60 <0.01 - 0.92 7 0.81 - 1.29 0.02 - 0.98 -
 P –0.06 - 0.31 <0.01 - 0.87 9 0.51 - 3.03 < 0.01 - 0.68 1, 8 - 10
† Note that when the number of pairs used to estimate I or C is very small (n < ≈15) then the statistic can take on values outside its normal range.
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Site-level spatial patterns in the vegetation 

Both the K-function and the PCF show strong 
aggregation of all stems at short distances (Fig. 1). 
On the basis of the PCF, plants at the Crest site are 
aggregated up to distances of 2 m, at the Laterite site 
up to 10 m, at the Limestone site up to 1.5 m before 
becoming regular at distances beyond 2.5 m, and 
at the Swale site at distances up to 2 m. At longer 
distances, aggregation becomes weaker for the PCF 
at all sites; regularity is observed at the Limestone 
site at distances ≈2.5 m for the PCF, but not for the 
K-function.

Spatial pattern of individual species

Broad description of patterns
In all, 233 species distributions were analysed. 

On the basis of the curvewise CvM statistic, at all 
sites most species were either aggregated or showed 
CSR (Fig. 2a). The percentage of aggregated species 
varied between sites, ranging between 44 and 52% 
(Swale) to 85 and 90% (Limestone) of all species, 
based on L(r) and g(r), respectively (Fig. 2a). Only 
one species showed a regular distribution at any site, 
Hibbertia aff. hypericoides (Dilleniaceae) at Swale 
(at small distances). There is a statistically significant 
site-by-pattern interaction (G2 = 23.8 and 21.6 for 

Fig. 1. Site-level patterns of stems and their corresponding L-functions and PCFs; confidence envelopes (grey lines) estimated at 
the α = 0.01 level using a homogeneous Poisson model.

Fig. 2. a. Proportion of aggregated vs. non-aggregated (random 
or regular) species, based on curvewise tests, at each of the 
four sites; b. weighted average (± 1 weighted SEM) of the 
PCF (the community aggregation index, CAI) at 0.5 and 1.0 
m for each of the four sites; dotted line indicates theoretical 
value under CSR.
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the K-function and the PCF, respectively, with df = 3 
and p << 0.0001 for both). Limestone had the highest 
proportion of aggregated species, and Swale the low-
est; similar trends, in terms of strength of patterning 
were apparent when community-wide spatial patterns 
(CAI) were considered (Fig. 2b). 

The distances over which departure from CSR oc-
curs also varies between sites (Fig. 3); this distance 
is 4.0, 2.0, 1.6 and 0.7 m at the Limestone, Laterite, 
Crest, and Swale, respectively, if all species are con-
sidered and 4.4, 2.6, 2.2 and 1.4 m if only aggregated 
species are considered. Thus, the site with the highest 
proportion of aggregated species (Limestone) shows 
local aggregation over the widest distances.

Point process models 
First- (IPP) and second-order (PCP) point process 

models were fitted to all species that were deemed to 
show an aggregated pattern (i.e. significant departure 
from CSR; Fig. 4). For aggregated species the PCP 

Fig. 3. Proportion of 
species showing differ-
ent patterns by distance 
at each site (dark grey = 
aggregated, light grey = 
CSR, white = regular); 
pattern was assessed on 
the basis of where g(r) fell 
in relation to the simulated 
confidence envelopes.

Table 3. Average values for patch radius (σ·[π/2]½) and plants per patch for aggregated species best described by the PCP model 
at each of the four sites.

  σ·[π/2]½ (in metres) Plants / patch
Site n Mean SD Mean SD
     
Limestone 30 2.47 2.37 11.29 13.72
Laterite 32 2.89 1.49 17.72 13.51
Crest 37 3.43 2.65 9.27 10.66
Swale 30 2.84 2.38 7.58 4.22

model provided a better fit than the IPP model, giving 
the best fit for 79% (30), 86% (32), 93% (37), and 
91% (30) of species at Limestone, Laterite, Crest and 
Swale, respectively.

Based on the PCP models’ parameters σ and ρ, cluster 
extent (spatial) and size (number of individuals) can 
be estimated (Table 3). Cluster extents are smallest at 
Limestone and largest at Crest, with Laterite and Swale 
approximately the same. The Laterite has the most in-
dividuals per cluster, followed by Limestone and Crest 
(approximately the same), and then Swale. These trends 
broadly reflect the aggregation patterns described above 
– aggregated species at Limestone are characterised by 
spatially small but quite dense clusters, whereas ag-
gregated species at Swale show more spatially diffuse, 
lower density clusters.
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Fig. 4. ‘Typical’ examples of species fit by each of the three spatial process models: (1) the Poisson cluster process provides the 
best fit to Hakea costata at Limestone (2) the inhomogeneous Poisson process provides the best fit to Andersonia lehmanniana 
at Crest, and (3) the homogeneous Poisson process provides the best fit to Hakea incrassata  at Laterite.  Note that y-axis scaling 
varies on the plots of L(r).  
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Discussion

As with the majority of studies in species-rich ecosys-
tems, most species in the Mediterranean-type shrublands 
examined here were aggregated, though the extent of ag-
gregation ranged markedly across the four sites, from ca. 
50% (Swale) to ca. 90% (Limestone) of species with n ≥ 
20. Of the remaining species, almost all showed a random 
(CSR) pattern, with regularity observed only once.  Al-
though at some sites the proportion of aggregated species 
was high, it was not as high as that reported for (TRF) 
communities by Hubbell (1979), Condit et al. (2000) and 
Upadhaya et al. (2003). The values we report are closer 
to, but slightly higher than, those described by Armesto et 
al. (1986) for temperate forest communities and San José 
& Fariñas (1991) for savanna forest. A possible explana-
tion for the lower levels of aggregation (relative to TRFs) 
is that disturbance in kwongan predominantly occurs at 
the landscape level through widespread fire, whereas in 
TRFs, localised gap-level disturbances, with associated 
gap-phase dynamics, are more prevalent. Armesto et al. 
(1986) comment that recurrent landscape-level disturbance 
is likely to result in less aggregation as it reduces resource 
patchiness. The dominance of woody, resprouting species 
at these sites (55% at Limestone, 66% at Crest, 75% at 
Swale, 78% at Laterite; Enright et al. 2007) may also 
explain the relatively lower levels of aggregation com-
pared to those observed in some TRFs. The proportion 
of aggregated species within sites corresponds inversely 
to the proportion of resprouter species within sites.  
Resprouter populations represent multiple establishment 
events, unlike fire-killed species that are represented by 
single-aged cohorts. Each recruitment episode represents 
a different configuration of environmental conditions, 
with fire characteristics, subsequent weather conditions, 
post-fire density, post-fire litter patches, and the spatial 
distribution of other seedlings and resprouters varying 
between fires and spatially within fires. As a result, the 
spatial patterns shown by resprouter species represent 
the integration of variable environmental conditions 
across recruitment episodes, which may act to diffuse 
the influence of environmental heterogeneity in spatial 
patterns. On the other hand, all non-sprouters are subject 
to the same pattern of conditions, so may respond more 
strongly. Finally, the size of the plots used in these studies 
could be significant: the large (50 ha) TRF plots encompass 
much more landscape heterogeneity, including multiple 
overlapping seed shadows and considerable within-plot 
topographic variation, while we consider a broader range 
of life forms and plant sizes. 

We did not obtain support for the second of our 
hypotheses: aggregation is most prevalent (proportion of 
species) and strongest (deviation from CSR) at Limestone 
where resource availability is highest. This contradicts 

expectations from Collins & Khlar’s (1991) conceptual 
model that attempts to link resource availability and 
competition to spatial patterning. The few studies that 
consider how resource availability affects local spatial 
patterning are rather ambiguous. Padien & Lajtha 
(1992) and Schenk et al. (2003) both found evidence for 
increased aggregation of individuals in more resource-
rich environments. Conversely, Kikvidze et al. (2005) 
in a comparative study of 18 alpine grasslands, noted 
that aggregation was more prevalent at harsh sites, and 
attribute this to facilitative interactions. They also found 
that as species richness increased, fewer species showed 
random distributions. Aggregation at the sites that we 
consider here may indicate a competition effect, with 
strong competitor species tending to dominate resources 
and weaker ones marginalised to other microsites. This 
interpretation is supported by the fact that Limestone also 
had the lowest species richness. However, no definitive 
conclusion can be reached on this point given that only 
four sites were quantified, a common problem in studies of 
spatial pattern, where the effort involved in data collection 
usually restricts the number of sites available for analysis 
to one, or (rarely) a few. 

Finally, we found that for aggregated species, Poisson 
cluster process models (PCP) better described patterns of 
aggregation than did inhomogeneous Poisson processes. 
The success of the PCP models implies that second-order 
effects are responsible for the observed aggregation. 
Interactions between individuals are a possible explanation 
for the second-order pattern. Such interactions could 
result from localised seed dispersal around parents. In 
these systems most recruitment occurs in the first winter 
following fire and there is little recruitment between 
fire events (Enright & Lamont 1992), so the nature of 
the post-fire environment would drive such patterning. 
A second explanation for the clustering seen in the four 
communities is that species are responding to local 
variations in environmental conditions, especially in the 
post-fire environment. For example, Enright & Lamont 
(1989) and Lamont et al. (1993) showed that litter-filled 
microsites play a key role in the establishment of various 
woody species in these systems. Quadratic trend-surfaces 
(IPP models) do not capture these fine-grained patterns. 
Nevertheless, in these landscapes there are coarser-scaled 
patterns related to dune crest-swale patterning – thus, 
it might be expected that there are gradients in species 
density at these broader scales. At the plot scales we 
consider, however, we see strong localised clustering, 
and it is certainly possible that the landscape comprises 
gradients of clusters (i.e. a combination of first-order and 
second-order aggregation). Plotkin et al. (2000) describe 
patterns of ‘hierarchical aggregation’ in TRF “in which 
the local patches are themselves clustered following a 
more global pattern” – such multi-scale patterning is 
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likely in this system, but our data are limited to local 
(fine) scales. Those species best described by the first-
order model do not exhibit consistent spatial gradients at 
any of the sites; that is, the fitted gradients do not show 
the same orientation. This lack of consistent gradient 
structure suggests that the observed first-order patterns 
are not a response to abiotic gradients in the environment; 
rather they may be due to the plot edges cutting across 
the edges of diffuse clusters, thus resulting in apparent 
rather than true gradients. 

Effects of sample size on pattern 

It is worth commenting on the relationship between 
the number of events included in a specific analysis (i.e. 
the number of individuals representing a given species) 
and the outcomes of the spatial analysis. When sample 
sizes are small (n < ca. 20) the tests lack power because 
the sampling distribution has a large standard deviation 
and cannot be differentiated from CSR; thus we do not 
analyse species with fewer than 20 stems. This sample 
size effect may potentially account for at least part of 
the observed between-site differences in the proportion 
of aggregated species. The distribution of abundances 
differed between sites (Fisher’s α in Table 1), and, if 
power increases with the abundance of a species, those 
with proportionally fewer infrequent species may show a 
higher proportion of aggregation due to this effect alone. 
In our analyses (Table 1) we found that the site with the 
highest proportion of aggregated species (Limestone) 
had the lowest value of Fisher’s α (suggesting the most 
equitable distribution of abundances of the four sites). 
However, there was not a consistent negative relationship 
between α and the proportion of aggregated species (e.g. 
the Crest site, the site with the highest α, showed the 
second highest proportion of aggregated species).

Unfortunately the extent to which power (type-II 
error rate, β) changes with sample size (n) has been 
little investigated for the spatial statistics we use here. 
Thus, it is difficult to identify the sample size at which 
we can declare that we are satisfied with our type II 
error rate (here we have used n = 20 to ensure that a 
reasonable number of species is evaluated at each site). 
The problem is further confounded because it is possible 
that a species’ spatial pattern is not independent of its 
abundance (e.g. see Lehman & Tilman 1997; Moeur 
1993; Okuda et al. 1997). For instance, as abundance 
increases, competitive interactions become more likely 
and self-thinning processes may shift species towards 
more regular patterns. Alternatively, rare species may be 
poorer competitors and may, therefore, have enhanced 
survival in aggregated settings. While we do not seek 
to answer these difficult questions here they are worthy 
of future consideration.

Relation to conceptual pattern and interactions models

Enright & Lamont (1992) note the strong dominance 
of woody, resprouting species (> 70%) in these SW 
Australian shrubland ecosystems and infrequent recruit-
ment among them (i.e. there is little or no recruitment in 
many resprouter species after most fires, with occasional 
recruitment episodes when fire and favourable post-fire 
environmental conditions coincide). Thus, we might 
expect low levels of competition within stable popula-
tions of long-lived adults (i.e. the storage effect model of 
Warner & Chesson 1985). Although all relatively nutrient 
poor, the four sites do differ in their nutrient availability, 
declining in the order Limestone → Laterite → Crest ~ 
Swale (Table 1). Clear differences are obvious in pattern-
ing (proportion of species aggregated and intensity of 
aggregation) across the four sites. If the models of Menge 
& Sutherland (1987) and Collins & Khlar (1991) hold, 
competition should be weakest, and aggregation most 
prevalent, in the most resource-limited sites. In fact, we 
found the opposite – the highest proportion of aggregated 
species was seen at the most resource-abundant site. 
Species richness also declined as resource availability 
increased, as documented in other systems (e.g. Huston 
1990; Rajaniemi 2003). Although water is known to be 
limiting in this environment (Enright & Lamont 1992), the 
regular patterning seen in some arid shrublands was not 
observed here (e.g. cf Phillips & MacMahon 1981). 

Fire and spatial heterogeneity in the post-fire 
environment play crucial roles in this system. Lamont et 
al. (1993) found that although the majority of seeds from 
serotinous (canopy seed storage) shrubs, many of which 
do not survive fires, disperse into litter-filled microsites 
after fires, first-year seedlings in these patches have lower 
survival and growth rates than those located in intervening 
bare areas. Further, experimental pre-summer thinning 
of seedlings in the litter patches increased survival of the 
remainder twofold and the size of the survivors by more 
than 30%. In the plant communities explored here, none of 
which have experienced fire for at least a decade, such pat-
terning in the regeneration process may increase through 
time (e.g. by subsequent dispersal limitation) to produce 
the aggregation observed. Patchiness in the intensity of 
past fires may also result in aggregation (Odion & Davis 
2000). In other semi-arid environments, aggregation has 
been interpreted as a sign of facilitation. Although we do 
not explore bivariate interactions here, this is certainly 
possible in these communities. Facilitative-type effects, 
both interspecific and intraspecific, may explain some 
of the aggregation we observed. For example, small 
plants may preferentially grow under the crowns of large 
woody individuals where soil moisture may be higher and 
temperatures lower. We will explore such bivariate and 
multivariate associations in subsequent analyses.
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Conclusions 

We explored spatial pattern among plant species for 
samples of more than 10 000 individuals from each of 
four plots in species-rich Mediterranean-climate shrub-
lands in SW Australia. Although aggregation was the 
dominant species pattern in all four plots, it was less com-
mon than in comparable species-rich communities, such 
as the large TRF plots in Malaya and Panama, with many 
species showing CSR. This study provides tests of recent 
competition theory in relation to pattern: conceptual 
models suggest that plants at nutrient-rich sites should 
experience more intense competition which, in turn, 
results in decreased aggregation. Here, we found that the 
highest nutrient site had the lowest species richness and 
highest levels of individual species dominance, suggest-
ing a strong competition effect, but also the highest degree 
of aggregation. Differences in environmental conditions 
between sites appear to influence levels of aggregation, 
with higher nutrient levels favouring dominance and ag-
gregation, but resource variation within sites could not be 
related to spatial pattern at the local scale. Although we 
were able to discriminate between first and second-order 
aggregations, the prevalence of second-order aggregation 
awaits a satisfactory explanation.
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