1,595 research outputs found

    Overcoming device unreliability with continuous learning in a population coding based computing system

    Full text link
    The brain, which uses redundancy and continuous learning to overcome the unreliability of its components, provides a promising path to building computing systems that are robust to the unreliability of their constituent nanodevices. In this work, we illustrate this path by a computing system based on population coding with magnetic tunnel junctions that implement both neurons and synaptic weights. We show that equipping such a system with continuous learning enables it to recover from the loss of neurons and makes it possible to use unreliable synaptic weights (i.e. low energy barrier magnetic memories). There is a tradeoff between power consumption and precision because low energy barrier memories consume less energy than high barrier ones. For a given precision, there is an optimal number of neurons and an optimal energy barrier for the weights that leads to minimum power consumption

    Underachievement of Creatively Gifted High School Students

    Get PDF
    Underachievement is a pervasive problem for gifted students, and creatively gifted students may be at greater risk for underachievement due to personality traits, lack of challenge in strength areas, a mismatch between school environment and student needs, low status associated with creative achievements and behaviors in the school system, and other factors. This study focused on six creatively gifted, underachieving high school students from an urban-cluster area in the western United States. A hermeneutic phenomenological approach was used to gather data in the form of interviews with underachieving, creatively gifted students, their parents, and teachers; observation of classrooms; and creative artifacts to uncover the essence of the experience of underachievement for these stakeholders. These data groups were then compared to each other and existing literature to help generate recommendations for changes in school programming and practice for helping this student population

    Smooth quantum-classical transition in photon subtraction and addition processes

    Full text link
    Recently Parigi et al. [Science 317, 1890 (2007)] implemented experimentally the photon subtraction and addition processes from/to a light field in a conditional way, when the required operations were produced successfully only upon the positive outcome of a separate measurement. It was verified that for a low intensity beam (quantum regime) the bosonic annihilation operator does indeed describe a single photon subtraction, while the creation operator describes a photon addition. Nonetheless, the exact formal expressions for these operations do not always reduce to these simple identifications, and in this connection here we deduce the general superoperators for multiple photons subtraction and addition processes and analyze the statistics of the resulting states for classical field states having an arbitrary intensity. We obtain closed analytical expressions and verify that for classical fields with high intensity (classical regime) the operators that describe photon subtraction and addition processes deviate significantly from simply annihilation and creation operators. Complementarily, we analyze in details such a smooth quantum-classical transition as function of beam intensity for both processes.Comment: 7 pages, 5 figures. To appear in Phys. Rev.

    Collisional Semiclassical Aproximations in Phase-Space Representation

    Get PDF
    The Gaussian Wave-Packet phase-space representation is used to show that the expansion in powers of â„Ź\hbar of the quantum Liouville propagator leads, in the zeroth order term, to results close to those obtained in the statistical quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also verified that propagating the Wigner distribution along the classical trajectories the amount of error is less than that coming from propagating the Gaussian distribution along classical trajectories.Comment: 20 pages, REVTEX, no figures, 3 tables include

    Control of the geometric phase and pseudo-spin dynamics on coupled Bose-Einstein condensates

    Full text link
    We describe the behavior of two coupled Bose-Einstein condensates in time-dependent (TD) trap potentials and TD Rabi (or tunneling) frequency, using the two-mode approach. Starting from Bloch states, we succeed to get analytical solutions for the TD Schroedinger equation and present a detailed analysis of the relative and geometric phases acquired by the wave function of the condensates, as well as their population imbalance. We also establish a connection between the geometric phases and constants of motion which characterize the dynamic of the system. Besides analyzing the affects of temporality on condensates that differs by hyperfine degrees of freedom (internal Josephson effect), we also do present a brief discussion of a one specie condensate in a double-well potential (external Josephson effect).Comment: 1 tex file and 11 figures in pdf forma

    Semiconductor quantum dot - a quantum light source of multicolor photons with tunable statistics

    Full text link
    We investigate the intensity correlation properties of single photons emitted from an optically excited single semiconductor quantum dot. The second order temporal coherence function of the photons emitted at various wavelengths is measured as a function of the excitation power. We show experimentally and theoretically, for the first time, that a quantum dot is not only a source of correlated non-classical monochromatic photons but is also a source of correlated non-classical \emph{multicolor} photons with tunable correlation properties. We found that the emitted photon statistics can be varied by the excitation rate from a sub-Poissonian one, where the photons are temporally antibunched, to super-Poissonian, where they are temporally bunched.Comment: 4 pages, 2 figure

    Engineering Quantum Jump Superoperators for Single Photon Detectors

    Full text link
    We study the back-action of a single photon detector on the electromagnetic field upon a photodetection by considering a microscopic model in which the detector is constituted of a sensor and an amplification mechanism. Using the quantum trajectories approach we determine the Quantum Jump Superoperator (QJS) that describes the action of the detector on the field state immediately after the photocount. The resulting QJS consists of two parts: the bright counts term, representing the real photoabsorptions, and the dark counts term, representing the amplification of intrinsic excitations inside the detector. First we compare our results for the counting rates to experimental data, showing a good agreement. Then we point out that by modifying the field frequency one can engineer the form of QJS, obtaining the QJS's proposed previously in an ad hoc manner

    Multi-Dimensional Hermite Polynomials in Quantum Optics

    Full text link
    We study a class of optical circuits with vacuum input states consisting of Gaussian sources without coherent displacements such as down-converters and squeezers, together with detectors and passive interferometry (beam-splitters, polarisation rotations, phase-shifters etc.). We show that the outgoing state leaving the optical circuit can be expressed in terms of so-called multi-dimensional Hermite polynomials and give their recursion and orthogonality relations. We show how quantum teleportation of photon polarisation can be modelled using this description.Comment: 10 pages, submitted to J. Phys. A, removed spurious fil

    Entanglement of Atomic Qubits using an Optical Frequency Comb

    Full text link
    We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.Comment: 4 pages, 5 figure
    • …
    corecore