1,282 research outputs found
No periodicity revealed for an "eclipsing" ultraluminous supersoft X-ray source in M81
Luminous supersoft X-ray sources found in the Milky Way and Magellanic Clouds
are likely white dwarfs that steadily or cyclically burn accreted matter on
their surface, which are promising type Ia supernova progenitors. Observations
of distant galaxies with Chandra and XMM-Newton have revealed supersoft sources
that are generally hotter and more luminous, including some ultraluminous
supersoft sources (ULSs) that are possibly intermediate mass black holes of a
few thousand solar masses. In this paper we report our X-ray spectral and
timing analysis for M81-ULS1, an ultraluminous supersoft source in the nearby
spiral galaxy M81. M81-ULS1 has been persistently supersoft in 17 Chandra ACIS
observations spanning six years, and its spectrum can be described by either a
eV blackbody for a white dwarf, or a
eV multicolor accretion disk for a
intermediate mass black hole. In two observations, the light curves exhibited
dramatic flux drop/rise on time scales of seconds, reminiscent of
eclipse ingress/egress in eclipsing X-ray binaries. However, the exhaustive
search for periodicity in the reasonable range of 50 ksec to 50 days failed to
reveal an orbital period. The failure to reveal any periodicity is consistent
with the long period ( yrs) predicted for this system given the optical
identification of the secondary with an asymptotic giant star. Also, the
eclipse-like dramatic flux changes in hours are hard to explain under the white
dwarf model, but can in principle be explained by disk temperature changes
induced by accretion rate variations under the intermediate mass black hole
model.Comment: 19 pages, 7 figures, 1 table, to appear in ApJ
The Complex Phase Lag Behavior of the 3-12 Hz Quasi-Periodic Oscillations during the Very High State of XTE J1550-564
We present a study of the complex phase lag behavior of the low-frequency
(<20 Hz) quasi-periodic oscillations (QPOs) in the X-ray transient and
black-hole candidate XTE J1550-564 during its very high state. We distinguish
two different types of low-frequency QPOs, based on their coherence and
harmonic content. The first type is characterized by a 6 Hz QPO with a Q (the
QPO frequency divided by the QPO width) of <3 and with a harmonic at 12 Hz. The
second type of QPO is characterized by a 6 Hz QPO with a Q value of >6 and with
harmonics at 3, 12, 18, and possibly at 9 Hz. Not only the Q values and the
harmonic content of the two types are different, but also their phase lag
behavior. For the first type of QPO, the low energy photons (<5 keV) of both
the 6 Hz QPO and its harmonic at 12 Hz lag the hard energy photons (>5 keV) by
as much as 1.3 radian. The phase lags of the second type of QPO are more
complex. The soft photons (<5 keV) of the 3 and the 12 Hz QPOs lag the hard
photons (>5 keV) by as much as 1.0 radian. However, the soft photons of the 6
Hz QPO precede the hard ones by as much as 0.6 radian. This means that
different harmonics of this type of QPO have different signs for their phase
lags. This unusual behavior is hard to explain when the lags are due to
light-travel-time differences between the photons at different energies, e.g.,
in a Comptonizing region surrounding the area where the QPOs are formed.Comment: Accepted for publication in ApJ Letters, 29 September 199
A Comparison of Intermediate Mass Black Hole Candidate ULXs and Stellar-Mass Black Holes
Cool thermal emission components have recently been revealed in the X-ray
spectra of a small number of ultra-luminous X-ray (ULX) sources with L_X > 1
E+40 erg/s in nearby galaxies. These components can be well fitted with
accretion disk models, with temperatures approximately 5-10 times lower than
disk temperatures measured in stellar-mass Galactic black holes when observed
in their brightest states. Because disk temperature is expected to fall with
increasing black hole mass, and because the X-ray luminosity of these sources
exceeds the Eddington limit for 10 Msun black holes (L_Edd = 1.3 E+39 erg/s),
these sources are extremely promising intermediate-mass black hole candidates
(IMBHCs). In this Letter, we directly compare the inferred disk temperatures
and luminosities of these ULXs, with the disk temperatures and luminosities of
a number of Galactic black holes. The sample of stellar-mass black holes was
selected to include different orbital periods, companion types, inclinations,
and column densities. These ULXs and stellar-mass black holes occupy distinct
regions of a L_X -- kT diagram, suggesting these ULXs may harbor IMBHs. We
briefly discuss the important strengths and weaknesses of this interpretation.Comment: 4 pages, 2 color figures, uses emulateapj.sty and apjfonts.sty, subm.
to ApJ
Evaluating Spectral Models and the X-ray States of Neutron-Star X-ray Transients
We propose a hybrid model to fit the X-ray spectra of atoll-type X-ray
transients in the soft and hard states. This model uniquely produces luminosity
tracks that are proportional to T^4 for both the accretion disk and boundary
layer. The model also indicates low Comptonization levels for the soft state,
gaining a similarity to black holes in the relationship between Comptonization
level and the strength of integrated rms variability in the power density
spectrum. The boundary layer appears small, with a surface area that is roughly
constant across soft and hard states. This result may suggestion that the NS
radius is smaller than its inner-most stable circular orbit.Comment: 15 pages, 15 figures, accepted for publication in the Ap
High Magnetic Field Behaviour of the Triangular Lattice Antiferromagnet, CuFeO_2
The high magnetic field behaviour of the triangular lattice antiferromagnet
CuFeO_2 is studied using single crystal neutron diffraction measurements in a
field of up to 14.5 T and also by magnetisation measurements in a field of up
to 12 T. At low temperature, two well-defined first order magnetic phase
transitions are found in this range of applied magnetic field (H // c): at
H_c1=7.6(3)/7.1(3) T and H_c2=13.2(1)/12.7(1) T when ramping the field up/down.
In a field above H_c2 the magnetic Bragg peaks show unusual history dependence.
In zero field T_N1=14.2(1) K separates a high temperature paramagnetic and an
intermediate incommensurate structure, while T_N2=11.1(3) K divides an
incommensurate phase from the low-temperature 4-sublattice ground state. The
ordering temperature T_N1 is found to be almost field independent, while T_N2
decreases noticeably in applied field. The magnetic phase diagram is discussed
in terms of the interactions between an applied magnetic field and the highly
frustrated magnetic structure of CuFeO_2Comment: 7 pages, 8 figures in ReVTeX. To appear in PR
Hysteresis of spectral evolution in the soft state of black-hole binary LMC X-3
We report the discovery of hysteresis between the x-ray spectrum and
luminosity of black-hole binary LMC X-3. Our observations, with the
Proportional Counter Array on the Rossi X-ray Timing Explorer, took place
entirely within the soft spectral state, dominated by a spectral component that
was fitted well with a multicolor disk blackbody. A power-law component was
seen only during times when the luminosity of the disk blackbody was declining.
The x-ray luminosity at these times was comparable to that seen in transient
systems (x-ray novae) when they return to the hard state at the end of an
outburst. Our observations may represent partial transitions to the hard state;
complete transitions have been seen in this system by Wilms et al. (2001). If
they are related to the soft-to-hard transition in transients, then they
demonstrate that hysteresis effects can appear without a full state transition.
We discuss these observations in the context of earlier observations of
hysteresis within the hard state of binaries 1E 1740.7-2942 and GRS 1758-258
and in relation to published explanations of hysteresis in transients.Comment: 14 pages, 6 figures, accepted by The Astrophysical Journa
XMM-Newton observations of the spiral galaxy M74 (NGC 628)
The face-on spiral galaxy M74 (NGC 628) was observed by XMM on 2002 February
2. In total, 21 sources are found in the inner 5' from the nucleus (after
rejection of a few sources associated to foreground stars). Hardness ratios
suggest that about half of them belong to the galaxy. The higher-luminosity end
of the luminosity function is fitted by a power-law of slope -0.8. This can be
interpreted as evidence of ongoing star formation, in analogy with the
distributions found in disks of other late-type galaxies. A comparison with
previous Chandra observations reveals a new ultraluminous X-ray transient (L_x
\~ 1.5 x 10^39 erg/s in the 0.3--8 keV band) about 4' North of the nucleus. We
find another transient black-hole candidate (L_x ~ 5 x 10^38 erg/s) about 5'
North-West of the nucleus. The UV and X-ray counterparts of SN 2002ap are also
found in this XMM observation.Comment: submitted to ApJL. Based on publicly available data, see
http://xmm.vilspa.esa.es/external/xmm_news/items/sn_2002_ap/index.shtm
The 1996 Soft State Transitions of Cygnus X-1
We report continuous monitoring of Cygnus X-1 in the 1.3 to 200 keV band
using ASM/RXTE and BATSE/CGRO for about 200 days from 1996 February 21 to 1996
early September. During this period Cygnus X-1 experienced a hard-to-soft and
then a soft-to-hard state transition. The low-energy X-ray (1.3-12 keV) and
high-energy X-ray (20-200 keV) fluxes are strongly anti-correlated during this
period. During the state transitions flux variations of about a factor of 5 and
15 were seen in the 1.3-3.0 keV and 100-200 keV bands, respectively, while the
average 4.8-12 keV flux remains almost unchanged. The net effect of this
pivoting is that the total 1.3-200 keV luminosity remained unchanged to within
about 15%. The bolometric luminosity in the soft state may be as high as 50-70%
above the hard state luminosity, after color corrections for the luminosity
below 1.3 keV. The blackbody component flux and temperature increase in the
soft state is probably caused by a combination of the optically thick disk mass
accretion rate increase and a decrease of the inner disk radius.Comment: 18 pages, 1 PostScript figure. Accepted for ApJ
Electric Polarization Induced by a Proper Helical Magnetic Ordering in a Delafossite Multiferroic CuFe1-xAlxO2
Multiferroic CuFe1-xAlxO2 (x=0.02) exhibits a ferroelectric ordering
accompanied by a proper helical magnetic ordering below T=7K under zero
magnetic field. By polarized neutron diffraction and pyroelectric measurements,
we have revealed a one-to-one correspondence between the spin helicity and the
direction of the spontaneous electric polarization. This result indicates that
the spin helicity of the proper helical magnetic ordering is essential for the
ferroelectricity in CuFe1-xAlxO2. The induction of the electric polarization by
the proper helical magnetic ordering is, however, cannot be explained by the
Katsura-Nagaosa-Balatsky model, which successfully explains the
ferroelectricity in the recently explored ferroelectric helimagnets, such as
TbMnO3. We thus conclude that CuFe1-xAlxO2 is a new class of magnetic
ferroelectrics.Comment: 4 pages, 4 figure
Spin-Wave Spectrum in `Single-Domain' Magnetic Ground State of Triangular Lattice Antiferromagnet CuFeO2
By means of neutron scattering measurements, we have investigated spin-wave
excitation in a collinear four-sublattice (4SL) magnetic ground state of a
triangular lattice antiferromagnet CuFeO2, which has been of recent interest as
a strongly frustrated magnet, a spin-lattice coupled system and a multiferroic.
To avoid mixing of spin-wave spectrum from magnetic domains having three
different orientations reflecting trigonal symmetry of the crystal structure,
we have applied uniaxial pressure on [1-10] direction of a single crystal
CuFeO2. By elastic neutron scattering measurements, we have found that only 10
MPa of the uniaxial pressure results in almost 'single domain' state in the 4SL
phase. We have thus performed inelastic neutron scattering measurements using
the single domain sample, and have identified two distinct spin- wave branches.
The dispersion relation of the upper spin-wave branch cannot be explained by
the previous theoretical model [R. S. Fishman: J. Appl. Phys. 103 (2008)
07B109]. This implies the importance of the lattice degree of freedom in the
spin-wave excitation in this system, because the previous calculation neglected
the effect of the spin-driven lattice distortion in the 4SL phase. We have also
discussed relationship between the present results and the recently discovered
"electromagnon" excitation.Comment: 5 pages, 3 figures, accepted for publication in J. Phys. Soc. Jp
- …