459 research outputs found

    Spin Hall and longitudinal conductivity of a conserved spin current in two dimensional heavy-hole gases

    Full text link
    The spin Hall and longitudinal conductivity of a 2D heavy-hole gas with {\it k}-cubic Rashba and Dresselhaus spin-orbit interaction is studied in the ac frequency domain. Using Kubo linear-response theory and a recently proposed definition for the (conserved) spin current operator suitable for spin-3/2 holes, it is shown that the spin conductivity tensor exhibit very distinguishable features from those obtained with the standard definition of the spin current. This is due to a significant contribution of the spin-torque term arisen from the alternative definition of spin current which strongly affects the magnitude and the sign of the dynamic spin current. In the dc (free of disorder) limit, the spin Hall conductivity for only (or dominant) {\it k}-cubic Rashba coupling is σxys,z(0)=−9e/8π\sigma^{s,z}_{xy}(0)=-9e/8\pi, whereas σxys,z(0)=−3e/8π\sigma^{s,z}_{xy}(0)=-3e/8\pi for only (or dominant) {\it k}-cubic Dresselhaus coupling. Such anisotropic response is understood in terms of the absence of mapping the {\it k}-cubic Rashba ↔\leftrightarrow Dresselhaus Hamiltonians. This asymmetry is also responsible for the non-vanishing dc spin Hall conductivity (σxys,z(0)=−6e/8π\sigma^{s,z}_{xy}(0)=-6e/8\pi) when the Rashba and Dresselhaus parameters have the same strength, in contrast with its corresponding case for electrons. These results are of relevance to validate the alternative definition of spin-current through measurements in the frequency domain of the spin accumulation and/or spin currents in 2D hole gases.Comment: 12 pages, 6 figures; typos added; Recommendations from referees added. Title change

    Spin torque contribution to the a.c. spin Hall conductivity

    Full text link
    Using the recently proposed definition of a conserved spin-current operator [J. Shi et al., Phys. Rev. Lett. 96, 076604 (2006)] we explore the frequency dependent spin Hall conductivity for a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit interaction in response to an oscillating electric field. We show that the optical spectrum of the spin Hall conductivity exhibit remarkable changes when the new definition of spin current is applied. Such behavior is mainly due to a significant contribution of the spin torque term which is absent in the conventional form of the spin current. In addition, it is observed that the magnitude and direction of the dynamic spin Hall current strongly depends on the electric field frequency as with the interplay of the spin-orbit coupling strengths.Comment: 8 pages, 4 figures, pape

    From classical to quantum spintronics: Theory of coherent spin injection and spin valve phenomena

    Full text link
    We present a theory of coherent quantum transport in ferromagnetic/ non-magnetic/ ferromagnetic heterojunctions. We predict quantum coherence to give rise to a quantum spin valve effect that, unlike its familiar classical analog, occurs even in the absence of a net spin current through the heterostructure. Thus the relationship between spin and charge transport is qualitatively different in the presence of quantum interference than in the (semi)classical regime. This has important implications for the design of quantum coherent spintronic devices and the interpretation of experiments.Comment: 5 pages, 2 figures. To appear in EP

    Energy spectrum and Landau levels in bilayer graphene with spin-orbit interaction

    Get PDF
    We present a theoretical study of the bandstructure and Landau levels in bilayer graphene at low energies in the presence of a transverse magnetic field and Rashba spin-orbit interaction in the regime of negligible trigonal distortion. Within an effective low energy approach (L\"owdin partitioning theory) we derive an effective Hamiltonian for bilayer graphene that incorporates the influence of the Zeeman effect, the Rashba spin-orbit interaction, and inclusively, the role of the intrinsic spin-orbit interaction on the same footing. Particular attention is spent to the energy spectrum and Landau levels. Our modeling unveil the strong influence of the Rashba coupling λR\lambda_R in the spin-splitting of the electron and hole bands. Graphene bilayers with weak Rashba spin-orbit interaction show a spin-splitting linear in momentum and proportional to λR\lambda_R , but scales inversely proportional to the interlayer hopping energy γ1\gamma_1. However, at robust spin-orbit coupling λR\lambda_R the energy spectrum shows a strong warping behavior near the Dirac points. We find the bias-induced gap in bilayer graphene to be decreasing with increasing Rashba coupling, a behavior resembling a topological insulator transition. We further predict an unexpected assymetric spin-splitting and crossings of the Landau levels due to the interplay between the Rashba interaction and the external bias voltage. Our results are of relevance for interpreting magnetotransport and infrared cyclotron resonance measurements, including also situations of comparatively weak spin-orbit coupling.Comment: 25 pages, 5 figure

    Spin Precession and Oscillations in Mesoscopic Systems

    Full text link
    We compare and contrast magneto-transport oscillations in the fully quantum (single-electron coherent) and classical limits for a simple but illustrative model. In particular, we study the induced magnetization and spin current in a two-terminal double-barrier structure with an applied Zeeman field between the barriers and spin disequilibrium in the contacts. Classically, the spin current shows strong tunneling resonances due to spin precession in the region between the two barriers. However, these oscillations are distinguishable from those in the fully coherent case, for which a proper treatment of the electron phase is required. We explain the differences in terms of the presence or absence of coherent multiple wave reflections.Comment: 9 pages, 5 figure

    “I was pushed out of school”: Social and Emotional Approaches to a Youth Promotion Program

    Get PDF
    In this study, we analyze the effects of Project GRIT (Generating Resiliency and Inspiring Transformation), a six-week intervention program that worked with a group of high school pushouts, students who were encouraged to leave school, in a school district in southern California. We interviewed thirty-nine former high school students who “dropped out,” or were pushed out of school, 61.5% males (n=24) and 38.5% females (n=15). The mean age is 18.1 years and the sample consists of 27 Latino and 12 African American/Black youth. Findings indicate that an increase in healthy relationships with peers generates beneficial social and emotional skills, including increased communication, team-oriented thinking, projected self-actualization, trust, and development of self. We argue that storytelling is central to engaging and promoting at-promise students in the education system, providing them opportunities to overcome adversity, excel in academics, and expand their ability to build healthy relationships with others in their community

    Coherent spin valve phenomena and electrical spin injection in ferromagnetic/semiconductor/ferromagnetic junctions

    Full text link
    Coherent quantum transport in ferromagnetic/ semiconductor/ ferromagnetic junctions is studied theoretically within the Landauer framework of ballistic transport. We show that quantum coherence can have unexpected implications for spin injection and that some intuitive spintronic concepts which are founded in semi-classical physics no longer apply: A quantum spin-valve (QSV) effect occurs even in the absence of a net spin polarized current flowing through the device, unlike in the classical regime. The converse effect also arises, i.e. a zero spin-valve signal for a non-vanishing spin-current. We introduce new criteria useful for analyzing quantum and classical spin transport phenomena and the relationships between them. The effects on QSV behavior of spin-dependent electron transmission at the interfaces, interface Schottky barriers, Rashba spin-orbit coupling and temperature, are systematically investigated. While the signature of the QSV is found to be sensitive to temperature, interestingly, that of its converse is not. We argue that the QSV phenomenon can have important implications for the interpretation of spin-injection in quantum spintronic experiments with spin-valve geometries.Comment: 15 pages including 11 figures. To appear in PR

    Spin rotation for ballistic electron transmission induced by spin-orbit interaction

    Full text link
    We study spin dependent electron transmission through one- and two-dimensional curved waveguides and quantum dots with account of spin-orbit interaction. We prove that for a transmission through arbitrary structure there is no spin polarization provided that electron transmits in isolated energy subband and only two leads are attached to the structure. In particular there is no spin polarization in the one-dimensional wire for which spin dependent solution is found analytically. The solution demonstrates spin evolution as dependent on a length of wire. Numerical solution for transmission of electrons through the two-dimensional curved waveguides coincides with the solution for the one-dimensional wire if the energy of electron is within the first energy subband. In the vicinity of edges of the energy subbands there are sharp anomalies of spin flipping.Comment: 9 oages, 7 figure
    • 

    corecore