22 research outputs found

    Exploiting the Role of Endogenous Lymphoid-Resident Dendritic Cells in the Priming of NKT Cells and CD8+ T Cells to Dendritic Cell-Based Vaccines

    Get PDF
    Transfer of antigen between antigen-presenting cells (APCs) is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs), were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8Ξ±+ dendritic cells (DCs), suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8Ξ±+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid Ξ±-galactosylceramide (Ξ±-GalCer) to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT) cells. In fact, injection of Ξ±-GalCer-loaded CD1dβˆ’/βˆ’ BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8Ξ±+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and Ξ±-GalCer may be particularly well suited to this purpose

    Genetic or pharmaceutical blockade of phosphoinositide 3-kinase p110Ξ΄ prevents chronic rejection of heart allografts.

    Get PDF
    Chronic rejection is the major cause of long-term heart allograft failure, characterized by tissue infiltration by recipient T cells with indirect allospecificity. Phosphoinositol-3-kinase p110Ξ΄ is a key mediator of T cell receptor signaling, regulating both T cell activation and migration of primed T cells to non-lymphoid antigen-rich tissue. We investigated the effect of genetic or pharmacologic inactivation of PI3K p110Ξ΄ on the development of chronic allograft rejection in a murine model in which HY-mismatched male hearts were transplanted into female recipients. We show that suppression of p110Ξ΄ activity significantly attenuates the development of chronic rejection of heart grafts in the absence of any additional immunosuppressive treatment by impairing the localization of antigen-specific T cells to the grafts, while not inducing specific T cell tolerance. p110Ξ΄ pharmacologic inactivation is effective when initiated after transplantation. Targeting p110Ξ΄ activity might be a viable strategy for the treatment of heart chronic rejection in humans

    Examination of HY response:T cell expansion, immunodominance, and cross-priming revealed by HY tetramer analysis

    No full text
    Abstract We have applied MHC class I tetramers representing the two H2b MHC class I-restricted epitopes of the mouse male-specific minor transplantation Ag, HY, to directly determine the extent of expansion and immunodominance within the CD8+ T cell compartment following exposure to male tissue. Immunization with male bone marrow (BM), spleen, dendritic cells (DCs) and by skin graft led to rapid expansion of both specificities occupying up to &amp;gt;20% of the CD8+ T cell pool. At a high dose, whole BM or spleen were found to be more effective at stimulating the response than BM-derived DCs. In vivo, immunodominance within the responding cell population was only observed following chronic Ag stimulation, whereas epitope immunodominance was established rapidly following in vitro restimulation. Peptide affinity for the restricting MHC molecule was greater for the immunodominant epitope, suggesting that this might be a factor in the emergence of immunodominance. Using tetramers, we were able to directly visualize the cross-primed CD8+ HY response, but we did not find it to be the principal route for MHC class I presentation. Immunization with female spleen or DCs coated with the full complement of defined HY peptides, including the Ab-restricted CD4+ Th cell determinant, failed to induce tetramer-reactive cells.</jats:p

    HY peptides modulate transplantation responses to skin allografts

    No full text
    Injection of female C57BL/6 mice with immature female bone marrow-derived dendritic cells (BMDC) pulsed with a single immunodominant HYDb Uty peptide, WMHHNMDLI, induces prolonged survival of syngeneic male skin grafts. In contrast, injection of immature female BMDC pulsed with a single MHC class I-restricted HYAb Dby peptide, NAGFNSNRANSSRSS, causes immunization similar to that following injection of male cells. Tolerance induced by HYDb Uty peptide pretreatment is not characterized by clonal deletion: long-term tolerant mice maintain circulating HYDb Uty tetramer+ T cells which expand following exposure to male cells in vivo or in vitro. Tolerance to male skin grafts can be adoptively transferred into neonatal females with splenocytes from tolerant donors. Tolerance is specificβ€”third-party skin grafts are rejected. We propose that tolerance in this model is initiated by cognate interaction of HYDb Uty-specific CD8+ T cells with their ligand, presented either on the injected immature BMDC or on recipient DC. This interaction leads to incomplete activation of the CD8+ T cells resulting in diminished responsiveness of CD4+ and CD8+ T cells specific for HY peptide epitopes subsequently presented on the male graft

    Role of immunoproteasomes in cross-presentation.

    No full text
    The evidence that proteasomes are involved in the processing of cross-presented proteins is indirect and based on the in vitro use of proteasome inhibitors. It remains, therefore, unclear whether cross-presentation of MHC class I peptide epitopes can occur entirely within phagolysosomes or whether it requires proteasome degradation. To address this question, we studied in vivo cross-presentation of an immunoproteasome-dependent epitope. First, we demonstrated that generation of the immunodominant HY Uty(246-254) epitope is LMP7 dependent, resulting in the lack of rejection of male LMP7-deficient (LMP7(-/-)) skin grafts by female LMP7(-/-) mice. Second, we ruled out an altered Uty(246-254)-specific T cell repertoire in LMP7(-/-) female mice and demonstrated efficient Uty(246-254) presentation by re-expressing LMP7 in male LMP7(-/-) cells. Finally, we observed that LMP7 expression significantly enhanced cross-priming of Uty(246-254)-specific T cells in vivo. The observations that male skin grafts are not rejected by LMP7(-/-) female mice and that presentation of a proteasome-dependent peptide is not efficiently rescued by alternative cross-presentation pathways provide strong evidence that proteasomes play an important role in cross-priming events

    Public T cell receptor ?-chains are not advantaged during positive selection

    No full text
    Studies of human and murine T cells have shown that public TCR beta-chain rearrangements can dominate the Ag-specific and naive repertoires of distinct individuals. We show that mouse T cells responding to the minor histocompatibility Ag HYD(b)Smcy share an invariant V beta 8.2-J beta 2.3 TCR gene rearrangement. The dominance of this rearrangement shows that it successfully negotiated thymic selection and was highly favored during clonal expansion in all animals examined. We hypothesized that such beta-chains are advantaged during thymic and/or peripheral selection and, as a result, may be over-represented in the naive repertoire. A sequencing study was undertaken to examine the diversity of V beta 8.2-J beta 2.3 CDR3 loops from naive T cell repertoires of multiple mice. Public TCR beta-chain sequences were identified across different repertoires and MHC haplotypes. To determine whether such public beta-chains are advantaged during thymic selection, individual chains were followed through T cell development in a series of novel bone marrow competition chimeras. We demonstrate that beta-chains were positively selected with similar efficiency regardless of CDR3 loop sequence. Therefore, the establishment and maintenance of public beta-chains in the periphery is predominantly controlled by post-thymic events through modification of the primary, thymus-derived TCR repertoire
    corecore