1,510 research outputs found

    Statistical mechanics of spatial evolutionary games

    Full text link
    We discuss the long-run behavior of stochastic dynamics of many interacting players in spatial evolutionary games. In particular, we investigate the effect of the number of players and the noise level on the stochastic stability of Nash equilibria. We discuss similarities and differences between systems of interacting players maximizing their individual payoffs and particles minimizing their interaction energy. We use concepts and techniques of statistical mechanics to study game-theoretic models. In order to obtain results in the case of the so-called potential games, we analyze the thermodynamic limit of the appropriate models of interacting particles.Comment: 19 pages, to appear in J. Phys.

    Advancing the field of organizations through the study of military organizations

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1093/icc/dtt059This article argues that the field of organization studies may learn from closer study of decision-making and behaviors in military organizations. It describes some of the intellectual roots of organizational studies within a strategic, military context; discusses some recent characteristics of strategic competition that organ- ization scholars may find fruitful to study; and view some of the key contemporary challenges in military organizations through the lens of strategic organization design, a framework the builds on, and integrates, several streams of research in organizational behavior that have implications for, and influence, how organizations make strategic decisions

    Spectroscopic diagnostic for the mineralogy of large dust grains

    Get PDF
    We examine the thermal infrared spectra of large dust grains of different chemical composition and mineralogy. Strong resonances in the optical properties result in detectable spectral structure even when the grain is much larger than the wavelength at which it radiates. We apply this to the thermal infrared spectra of compact amorphous and crystalline silicates. The weak resonances of amorphous silicates at 9.7 and 18 micron virtually disappear for grains larger than about 10 micron. In contrast, the strong resonances of crystalline silicates produce emission dips in the infrared spectra of large grains; these emission dips are shifted in wavelength compared to the emission peaks commonly seen in small crystalline silicate grains. We discuss the effect of a fluffy or compact grain structure on the infrared emission spectra of large grains, and apply our theory to the dust shell surrounding Vega.Comment: Submitted to A&A Letter

    Tight-binding parameterization for photonic band gap materials

    Full text link
    The ideas of the linear combination of atomic orbitals (LCAO) method, well known from the study of electrons, is extended to the classical wave case. The Mie resonances of the isolated scatterer in the classical wave case, are analogous to the localized eigenstates in the electronic case. The matrix elements of the two-dimensional tight-binding (TB) Hamiltonian are obtained by fitting to ab initio results. The transferability of the TB model is tested by reproducing accurately the band structure of different 2D lattices, with and without defects, thus proving that the obtained TB parameters can be used to study other properties of the photonic band gap materials.Comment: 4 pages, 3 postscript figures, sumbitted to Phys. rev. Let

    An integral equation method for solving neumann problems on simply and multiply connected regions with smooth boundaries

    Get PDF
    This research presents several new boundary integral equations for the solution of Laplace’s equation with the Neumann boundary condition on both bounded and unbounded multiply connected regions. The integral equations are uniquely solvable Fredholm integral equations of the second kind with the generalized Neumann kernel. The complete discussion of the solvability of the integral equations is also presented. Numerical results obtained show the efficiency of the proposed method when the boundaries of the regions are sufficiently smooth

    Knowledge, attitude and practice towards sexual and reproductive health including comprehensive sexuality education among first year students of university Malaysia Sabah (UMS), Malaysia

    Get PDF
    This study aims to assess knowledge, attitude and behavior in sexual and reproductive health (SRH) including comprehensive sexuality education (CSE) among 439 first year students; 213 sciences and 226 arts students from 5 Faculties of University Malaysia Sabah (2016-2017). Exposure of Malaysian students to sexual education is limited to science subjects which are only being taught at upper elementary and secondary high school levels. Arts students are less exposed to sexual education across Malaysia as it is delivered in Basic Science subject only. It was a university-based, cross-sectional, descriptive study. Pretested self- administered questionnaire was anonymously completed by all participants and was conducted from November 2016 to January 2017. Students’ demographic characteristics from Science and Arts streams were same except females, Sabah ethnics and Malays were more in Arts. Awareness of HIV/AIDS, Condom, Wet dream, COC pills and abortion services were more in Science students and statistically significant. 34.3 % and 81.2% of Science students agreed that CSE should be introduced in primary and secondary school but not statistically significant. 22 out of 439 students were sexually active. Science students had more knowledge about SRH and favourable attitude towards sexuality education but less favourable behaviour of watching and reading pornographic materials. It was concluded that there were gaps in knowledge, attitude and behaviour of SRH and need to remedy these by giving appropriate CSE classes to first-year university students in an elective module according to their culture and religious beliefs in accord with International Technical Guidance on Sexuality Education (ITGSE)

    Gap deformation and classical wave localization in disordered two-dimensional photonic band gap materials

    Full text link
    By using two ab initio numerical methods we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic band gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vise versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ``nearly free'' photon and the ``strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, ie. multiple scattering and single scatterer resonances, and they qualitatively explain our results.Comment: Accepted for publication in Phys. Rev.

    Unusual formations of the free electromagnetic field in vacuum

    Full text link
    It is shown that there are exact solutions of the free Maxwell equations (FME) in vacuum allowing an existence of stable spherical formations of the free magnetic field and ring-like formations of the free electric field. It is detected that a form of these spheres and rings does not change with time in vacuum. It is shown that these convergent solutions are the result of an interference of some divergent solutions of FME. One can surmise that these electromagnetic formations correspond to Kapitsa's hypothesis about interference origin and a structure of fireball.Comment: Revtex-file, without figures. To get lournal-pdf-copy with figures contact with [email protected]

    Mie resonances and bonding in photonic crystals

    Full text link
    Isolated dielectric spheres support resonant electromagnetic modes which are analogous to electronic orbitals and, like their electronic counterparts, can form bonding or anti-bonding interactions between neighbouring spheres. By irradiating the system with light at the bonding frequency an attractive interaction is induced between the spheres. We suggest that by judicious selection of bonding states we can drive a system towards a desired structure, rather than rely on the structure dictated by gravitational or Van der Waals forces, the latter deriving from the zero point energy population of a state.Comment: Minor changes in text, of explanatory nature. 6 pages, Latex, 6 figures, accepted by Europhysics Letter

    In Situ Detection of Active Edge Sites in Single-Layer MoS2_2 Catalysts

    Full text link
    MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and hydrogen evolution, but unravelling their atomic-scale structure under catalytic working conditions has remained significantly challenging. Ambient pressure X-ray Photoelectron Spectroscopy (AP-XPS) allows us to follow in-situ the formation of the catalytically relevant MoS2 edge sites in their active state. The XPS fingerprint is described by independent contributions to the Mo3d core level spectrum whose relative intensity is sensitive to the thermodynamic conditions. Density Functional Theory (DFT) is used to model the triangular MoS2 particles on Au(111) and identify the particular sulphidation state of the edge sites. A consistent picture emerges in which the core level shifts for the edge Mo atoms evolve counter-intuitively towards higher binding energies when the active edges are reduced. The shift is explained by a surprising alteration in the metallic character of the edge sites, which is a distinct spectroscopic signature of the MoS2 edges under working conditions
    • …
    corecore