2 research outputs found

    Diamidocarbenes as versatile and reversible [2+1] cycloaddition reagents

    No full text
    We describe the synthesis of a variety of cyclopropanes and epoxides by combining a readily accessible and isolable N,N-2-diamidocarbene with a range of structurally and electronically diverse olefins and aldehydes, including electron-rich derivatives. Surprisingly, the cyclopropanation and epoxidation reactions were discovered to be rapid and thermally reversible at relatively low temperatures, two features often desired for applications that utilize dynamic covalent chemistry. In addition, a diamidocyclopropane derivative prepared via this method was hydrolysed successfully to form the corresponding linear carboxylic acid in a metal-and carbon monoxide-free hydrocarboxylation reaction. As such, diamidocarbenes are expected to find utility in the synthesis of cyclopropanes, epoxides and their derivatives, as well as in dynamic covalent chemistry applications.close424

    Palladium carbene complexes for selective alkene di- and oligomerization

    No full text
    A series of palladium complexes were synthesized that comprise three sterically different C,N-bidentate coordinating NHC-pyridine ligands (NHC = N-heterocyclic carbene). In one set, the pyridine and the carbene are linked by a flexible CH2 group (a), in the other two sets, the two ligand units are directly linked and feature a shielding mesityl substituent on the carbene and either an unsubstituted pyridine (b) or a xylyl-substituted pyridine unit (c). Investigation of the reactivity of cationic complexes [Pd(C^N)Me(NCMe)]+, 6, analogues to Brookhart’s α-diimine system, towards alkenes showed a strong correlation between the catalytic activity and selectivity and the ligand setting. While 6a was inactive in ethylene conversion, 6b afforded low-molecular weight olefins (oligomerization), and 6c produced exclusively butene (dimerization). With styrene as substrate, exclusive dimerization occurred with all three complexes. Steric and electronic factors were identified that govern the disparate activity and selectivity, and that allow for efficient tailoring of the catalytic performance.Other funderSwiss National Science FoundationMIUR (Italy)University College DublinNB embargo date January 12, 2013 -- JG; au, ti, sp, ke, li -TS 08.05.1
    corecore