23 research outputs found

    A randomized attitude slew planning algorithm for autonomous spacecraft

    Full text link
    The ability to autonomously generate and execute large angle attitude maneuvers, while operating under a number of celestial and dynamical constraints, is a key factor in the development of several future space platforms. In this paper we propose a ran-domized attitude slew planning algorithm for autonomous spacecraft, which is able to address a variety of pointing constraints, including bright object avoidance and ground link maintenance, as well as constraints on the control inputs and spacecraft states, and integral constraints such as those deriving from thermal control requirements. Moreover, through the scheduling of feedback control policies, the algorithm provides a consistent decoupling between low-level control and attitude motion planning, and is robust with respect to uncertainties in the spacecraft dynamics and environmental disturbances. Sim-ulation examples are presented and discussed
    corecore