13,215 research outputs found

    Experimental studies on twinjet afterbody-nozzle system of combat aircraft configurations

    Get PDF
    This report highlights the progress of the work carried out in the above project including the statement of expenditure for presentation at AR&DB annual symposium-201

    Heavy light tetraquarks from Lattice QCD

    Full text link
    We present preliminary results from a lattice calculation of tetraquark states in the charm and bottom sector of the type udbˉbˉud\bar{b}\bar{b}, usbˉbˉus\bar{b}\bar{b}, udcˉcˉud\bar{c}\bar{c} and scbˉbˉsc\bar{b}\bar{b}. These calculations are performed on Nf=2+1+1N_f = 2 + 1 + 1 MILC ensembles with lattice spacing of a=0.12 fma = 0.12~\mathrm{fm} and a=0.06 fma=0.06~\mathrm{fm} . A relativistic action with overlap fermions is employed for the light and charm quarks while a non-relativistic action with non-perturbatively improved coefficients is used in the bottom sector. Preliminary results provide a clear indication of presence of energy levels below the relevant thresholds of different tetraquark states. While in double charm sector we find shallow bound levels, our results suggest deeply bound levels with double bottom tetraquarks.Comment: Corrected threshold for the udcˉcˉud\bar{c}\bar{c} tetraquark state. Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain. TIFR preprint no : TIFR/TH/17-3

    SU(N) Coherent States

    Full text link
    We generalize Schwinger boson representation of SU(2) algebra to SU(N) and define coherent states of SU(N) using 2(2N11)2(2^{N-1}-1) bosonic harmonic oscillator creation and annihilation operators. We give an explicit construction of all (N-1) Casimirs of SU(N) in terms of these creation and annihilation operators. The SU(N) coherent states belonging to any irreducible representations of SU(N) are labelled by the eigenvalues of the Casimir operators and are characterized by (N-1) complex orthonormal vectors describing the SU(N) manifold. The coherent states provide a resolution of identity, satisfy the continuity property, and possess a variety of group theoretic properties.Comment: 25 pages, LaTex, no figure

    Cerebral autoregulation, brain injury, and the transitioning premature infant

    Get PDF
    Improvements in clinical management of the preterm infant have reduced the rates of the two most common forms of brain injury, such as severe intraventricular hemorrhage and white matter injury, both of which are contributory factors in the development of cerebral palsy. Nonetheless, they remain a persistent challenge and are associated with a significant increase in the risk of adverse neurodevelopment outcomes. Repeated episodes of ischemia–reperfusion represent a common pathway for both forms of injury, arising from discordance between systemic blood flow and the innate regulation of cerebral blood flow in the germinal matrix and periventricular white matter. Nevertheless, establishing firm hemodynamic boundaries, as a part of neuroprotective strategy, has challenged researchers. Existing measures either demonstrate inconsistent relationships with injury, as in the case of mean arterial blood pressure, or are not feasible for long-term monitoring, such as cardiac output estimated by echocardiography. These challenges have led some researchers to focus on the mechanisms that control blood flow to the brain, known as cerebrovascular autoregulation. Historically, the function of the cerebrovascular autoregulatory system has been difficult to quantify; however, the evolution of bedside monitoring devices, particularly near-infrared spectroscopy, has enabled new insights into these mechanisms and how impairment of blood flow regulation may contribute to catastrophic injury. In this review, we first seek to examine how technological advancement has changed the assessment of cerebrovascular autoregulation in premature infants. Next, we explore how clinical factors, including hypotension, vasoactive medications, acute and chronic hypoxia, and ventilation, alter the hemodynamic state of the preterm infant. Additionally, we examine how developmentally linked or acquired dysfunction in cerebral autoregulation contributes to preterm brain injury. In conclusion, we address exciting new approaches to the measurement of autoregulation and discuss the feasibility of translation to the bedside

    Short-wavelength secondary instabilities in homogeneous and stably stratified shear flows

    Full text link
    We present a numerical investigation of three-dimensional, short-wavelength linear instabilities in Kelvin-Helmholtz (KH) vortices in homogeneous and stratified environments. The base flow, generated using two-dimensional numerical simulations, is characterized by the Reynolds number and the Richardson number defined based on the initial one-dimensional velocity and buoyancy profiles. The local stability equations are then solved on closed streamlines in the vortical base flow, which is assumed quasi-steady. For the unstratified case, the elliptic instability at the vortex core dominates at early times, before being taken over by the hyperbolic instability at the vortex edge. For the stratified case, the early time instabilities comprise a dominant elliptic instability at the core and a hyperbolic instability strongly influenced by stratification at the vortex edge. At intermediate times, the local approach shows a new branch of instability (convective branch) that emerges at the vortex core and subsequently moves towards the vortex edge. A few more convective instability branches appear at the vortex core and move away, before coalescing to form the most unstable region inside the vortex periphery at large times. The dominant instability characteristics from the local approach are shown to be in good qualitative agreement with results from global instability studies for both homogeneous and stratified cases. Compartmentalized analyses are then used to elucidate the role of shear and stratification on the identified instabilities. The role of buoyancy is shown to be critical after the primary KH instability saturates, with the dominant convective instability shown to occur in regions with the strongest statically unstable layering. We conclude by highlighting the potentially insightful role that the local approach may offer in understanding the secondary instabilities in other flows.Comment: Submitted to J. Fluid Mech., 20 pages, 10 figure

    Strong light fields coax intramolecular reactions on femtosecond time scales

    Full text link
    Energetic H2+_2^+ ions are formed as a result of intra-molecular rearrangement during fragmentation of linear alcohols (methanol, ethanol, propanol, hexanol, and dodecanol) induced by intense optical fields produced by 100 fs long, infrared, laser pulses of peak intensity 8×1015\times10^{15} W cm2^{-2}. Polarization dependent measurements show, counterintuitively, that rearrangement is induced by the strong optical field within a single laser pulse, and that it occurs before Coulomb explosion of the field-ionized multiply charged alcohols
    corecore