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Zachary A. Vesoulis* and Amit M. Mathur

Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine,  
St. Louis, MO, USA

Improvements in clinical management of the preterm infant have reduced the rates of the 
two most common forms of brain injury, such as severe intraventricular hemorrhage and 
white matter injury, both of which are contributory factors in the development of cerebral 
palsy. Nonetheless, they remain a persistent challenge and are associated with a signifi-
cant increase in the risk of adverse neurodevelopment outcomes. Repeated episodes of 
ischemia–reperfusion represent a common pathway for both forms of injury, arising from 
discordance between systemic blood flow and the innate regulation of cerebral blood 
flow in the germinal matrix and periventricular white matter. Nevertheless, establishing 
firm hemodynamic boundaries, as a part of neuroprotective strategy, has challenged 
researchers. Existing measures either demonstrate inconsistent relationships with 
injury, as in the case of mean arterial blood pressure, or are not feasible for long-term 
monitoring, such as cardiac output estimated by echocardiography. These challenges 
have led some researchers to focus on the mechanisms that control blood flow to the 
brain, known as cerebrovascular autoregulation. Historically, the function of the cerebro-
vascular autoregulatory system has been difficult to quantify; however, the evolution of 
bedside monitoring devices, particularly near-infrared spectroscopy, has enabled new 
insights into these mechanisms and how impairment of blood flow regulation may con-
tribute to catastrophic injury. In this review, we first seek to examine how technological 
advancement has changed the assessment of cerebrovascular autoregulation in pre-
mature infants. Next, we explore how clinical factors, including hypotension, vasoactive 
medications, acute and chronic hypoxia, and ventilation, alter the hemodynamic state 
of the preterm infant. Additionally, we examine how developmentally linked or acquired 
dysfunction in cerebral autoregulation contributes to preterm brain injury. In conclusion, 
we address exciting new approaches to the measurement of autoregulation and discuss 
the feasibility of translation to the bedside.

Keywords: autoregulation, near-infrared spectroscopy, intraventricular hemorrhage, white matter injury, brain 
injury, prematurity

iNTRODUCTiON

Premature infants weighing less than 1,500 g at birth are frequently affected by two specific forms of 
brain injury, such as intraventricular hemorrhage (IVH) and white matter injury (WMI). In the last 
30 years, the incidence of IVH has fallen from nearly 50% (1) to 25% (2) as a result of antenatal steroid 
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administration, improved ventilator strategies, and improved 
obstetrical practices. In contrast, the incidence of WMI has 
remained essentially unchanged, affecting approximately 10% 
of infants less than 1,500 g (3). Both forms of injury are linked 
to the development life-long neurodevelopmental impairment, 
including cerebral palsy (4, 5).

Although there long have been defined associations between 
clinical factors (e.g., pneumothorax, need for cardiopulmonary 
resuscitation, sepsis, and necrotizing enterocolitis) and both 
forms of brain injury (5), the precise underlying mechanisms 
have remained less clear, despite the efficacy of some neuropro-
tective strategies. Given histologic evidence (6) suggesting the 
injury arises from discordance between systemic and cerebral 
blood flow (CBF) in the germinal matrix and periventricular 
white matter, a primary target for understanding the mechanism 
of brain injury, should be based in the investigation of perfusion. 
Current methods for assessing the adequacy of cardiac output 
to support proper organ system are typically imprecise, difficult 
to perform, are not feasible for longitudinal monitoring, or lack 
specificity to cerebral circulation.

Heart rate and capillary refill time remain key parts of the 
primary hemodynamic assessment. As neonates lack the ability 
to alter stroke volume, tachycardia is the primary means for 
increasing cardiac output, yet frequent confounding factors 
such as pain/agitation and caffeine citrate administration can 
confound the heart-rate assessment (7). Capillary refill can 
also be a very specific indicator of hemodynamic compromise; 
however, it lacks sensitivity (approximately 35%) needed for 
consistent assessment (8). Echocardiography remains the 
“gold standard” of evaluating volume status and vascular tone 
(preload and afterload), essential for estimate of cardiac output; 
however, it requires the skills of a cardiac sonographer and an 
expert interpreter and is impractical for longitudinal monitor-
ing. Blood flow through the superior vena cava, a measure of 
volume status, can also be measured by echocardiography (9) 
but again faces the challenge of longitudinal data capture. A 
similar measure of right ventricular filling can be evaluated by 
measurement of the central venous pressure via an umbilical 
venous catheter; however, there are significant challenges in 
interpretation of these values as there is a broad range of normal 
values, hampering discrimination between normal and patho-
logic states (10).

Over the last 10 years, investigation has shifted from examina-
tion of systemic blood flow to detailed investigation of patterns of 
CBF. This shift has been enabled by new technology, driving deeper 
investigation into the regulation of CBF in preterm infants, finding 
significant impairment of autoregulation as a major contributing 
factor to the development of IVH. Additionally, new strategies for 
identifying and classifying WMI on MRI have changed our views 
of the link between WMI and neurodevelopmental outcome (11). 
Cutting-edge techniques to identify WMI using simple, bedside 
monitoring provide an opportunity for earlier diagnosis and 
counseling of the family.

Taken together, technological advancements now provide a 
window, for the first time, into the detailed interplay of cerebro-
vascular regulation, ischemia–reperfusion, and the development 
of brain injury in preterm infants. These advances offer the 

potential for early detection of impending brain injury, allowing 
the opportunity for intervention with the aim of prevention or 
minimization of injury.

In this review, we seek to discuss advances in the field of brain 
monitoring, with a focus on hemodynamics, as related to the 
development of preterm brain injury. We explore new knowledge 
about the role clinical factors and management play in providing 
additional neuroprotection or contributing to worsened injury. 
Finally, we discuss future developments in the field including the 
potential for new clinical management strategies, which incorpo-
rate real-time, multimodality bedside monitoring in the NICU.

MeCHANiSMS OF iNJURY—ivH

During fetal development, neurons and glial cells arise from the 
germinal matrix and, sub-ventricular zone and migrate outwards 
toward the cortex. This process requires rich vascular support 
from a dense capillary bed within the germinal matrix. Unlike 
mature blood vessels, those of the germinal matrix are thin-
walled, lack pericytes and have limited glial fibers, making them 
extremely fragile. This capillary bed drains into the terminal vein 
before entering the internal cerebral vein (5).

Two postulations have emerged as to the pathogenesis of IVH. 
In one theory, significant fluctuations in arterial blood pressure, 
the result of sepsis, noxious stimuli, fluid boluses, or inotrope 
drugs, overwhelm the fragile capillary bed and lead to the 
bursting of the vessels. Alternatively, obstruction of the venous 
system, whether by pneumothorax impeding venous return, 
ventilator asynchrony or simply a change in head position caused 
an increase in hydrostatic pressure, again leads to the rupture of 
vessels in the capillary bed (5).

Both mechanisms likely provide contributory components, 
with cycles of ischemia and reperfusion further weakening the 
vascular structures until the blood vessels can no longer tolerate 
the fluctuations and burst.

MeCHANiSMS OF iNJURY—wMi

Investigation into the underlying pathophysiology of WMI has 
revealed a link between three predisposing factors (disturbances 
in cerebral oxygenation, infection, and inflammation) and a 
developmental vulnerability of the white matter between 23 and 
32 weeks of development (5, 12). Premyelinating oligodendrocyte 
progenitor cells (pre-OL), a subtype of glial cells that proliferate in 
waves during the second trimester, are found in high densities in 
the white matter and exhibit a maturation-dependent vulnerabil-
ity to oxidative stress (5, 13). This vulnerability can be intrinsic, 
caused by excessive glutathione depletion from oxidative stress 
or extrinsic, caused by glutamate receptor-mediated toxicity, the 
result of glutamate release by adjacent dying cells (14). Either 
mechanism sets up a cascade of events, leading to loss of pre-OLs 
and damage to surrounding white matter (15–17).

The premature brain is vulnerable to oxidative stress from 
hypoxic–ischemic injury as a result of the confluence of three key 
risk factors: heart-rate dependent cardiac output, the immature 
vascular supply, and disturbances in vascular autoregulation. 
First, continued adequate cardiac output in premature infants 
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FigURe 1 | Cerebral blood flow (CBF) is conceptualized as a 
sigmoidal curve with stable blood flow across a range of “normal” 
blood pressure and impairment at either extreme.
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is tenuous; given that stroke volume is relatively fixed, cardiac 
output is dependent on heart rate (13). Any disturbance in the 
heart rate [e.g., apnea of prematurity, with resulting bradycardia 
(18)] sets up the possibility of ischemia. Second, the white matter, 
particularly in the periventricular zone, is supplied by the long 
penetrating arteries, which first arise around 24 weeks of gestation 
but maintain remarkably low levels of blood flow, with minimal 
collateralization, until 30–32 weeks of gestation (6, 19). Finally, 
there is evidence of an impaired cerebrovascular autoregulatory 
system, suggesting that the preterm brain has limited capacity 
to regulate blood flow when oxygen saturation or cardiac output 
is reduced (20, 21). Repeated ischemic episodes associated with 
any of these mechanisms will generate an inflammatory response, 
thus increasing the metabolic demand, utilizing a greater fraction 
of delivered oxygen, and potentiating further injury during the 
next ischemic episode.

Review OF CeReBROvASCULAR 
AUTORegULATORY SYSTeM

The cerebrovascular autoregulatory system is a physiologic 
mechanism, which functions to maintain constant and stable 
CBF. The classic depiction of this system is a sigmoidal curve 
(Figure 1) with stable CBF over a range of normal blood pres-
sures and unstable CBF when the blood pressure is outside of 
this range. The work of Lou (22) and Ment (23) demonstrated the 
failure of the preterm cerebral vasculature to maintain uniform 
cerebral perfusion over a range of systemic blood pressures, a 
phenomena termed “pressure-passive circulation.”

A complementary view of blood flow regulation was initially 
proposed in the nineteenth century by Siegmund Mayer when 
he observed spontaneous rhythmic oscillations in blood vessel 
diameter, with a periodicity of 10  s (0.1  Hz), in the wings of 
bats. Recent computational techniques have allowed greater 
exploration of this dynamic model, with data suggesting that 
the autoregulatory system attenuates the effect of low-frequency 
fluctuations in blood pressure, effectively functioning as a high-
pass filter (24, 25). These oscillations, now called “Mayer waves,” 
arise from changes in the vasomotor tone of arterial blood vessels 
throughout the body and are likely driven by the autonomic nerv-
ous system.

Oscillations in blood pressure can divided into three catego-
ries based on their periodicity—high frequency (HF, >0.5 Hz), 
low frequency (LF, 0.05–0.5 Hz), and very-low frequency (VLF, 
<0.05  Hz). HF fluctuations are driven by the respiratory cycle 
(and thus are relatively fixed). LF and VLF variability represent 
the composite influence of autonomic (26), myogenic (27, 28), 
and cellular (29) control mechanisms. Crucially, the intensity of 
response of these control mechanisms is modulated by circulat-
ing catecholamines (30), vasoactive intestinal peptides (31), nitric 
oxide (26, 32, 33), hypovolemia (34), and the renin–angiotensin 
system (35). Cerebrovascular autoregulatory system failure results 
in unstable CBF, generating the cycle of ischemia–reperfusion, 
which drives the mechanisms of preterm brain injury.

OveRview OF MeTHODS FOR 
QUANTiFYiNg THe AUTORegULATORY 
SYSTeM

Methods for quantifying the state of the autoregulatory system 
have evolved over time in conjunction with advances in technol-
ogy. Reliably testing the function of the cerebral autoregulatory 
system in the preterm population, however, has proven to be a dif-
ficult task, largely due to the broad diversity in neurophysiologic 
development, technical challenges associated with capturing 
data, the lack of a clear definition for hypotension (36), and lack 
of a standardized analysis methodology. The earliest approaches 
that used PET, transcranial Doppler ultrasound, or 133Xe clear-
ance provide a dynamic view of the cerebral vasculature. While 
effective, they are not feasible for longitudinal monitoring due to 
concerns about radiation exposure, increased temperature in the 
target tissue (37), and the use of invasive delivery of radioactive 
isotopes, respectively. Furthermore, they provide only semiquan-
titative information about autoregulation.

The use of near-infrared spectroscopy (NIRS) to quantify 
cerebral flow represents a revolutionary step in obtaining longitu-
dinal hemodynamic information and comes with a dramatically 
improved safety profile in the vulnerable preterm neonate. The 
mixed-venous oxygen saturation of hemoglobin in a tissue can 
be estimated using NIRS, a technique that uses the difference in 
absorption of near-infrared light by oxy- and deoxyhemoglobin to 
detect the relative concentrations of each compound (Figure 2). 
Given that only 30% of blood is intra-arterial at any given time, the 
measured values represent a 30/70 arterial/venous-weighted esti-
mate of oxygen saturation. NIRS has been used extensively in the 
neonatal population, with recent publication of a reference dataset 
in a cohort of nearly 1,000 infants, suggesting a typical cerebral 
saturation value of approximately 65% (95% CI 55–75) (38).

Venous oxygenation is influenced by many parameters, 
including cardiac output, blood pressure, oxygen content of the 
blood, pH, and metabolic demand by tissues. These properties are 
highly advantageous to the study of regional tissue oxygenation, 
as these measurements reflect the amount of oxygen available to 
and consumed by the target of interest. This stands in contrast 
to arterial saturation measured by pulse oximetry (SpO2), which 
initially may remain at or near 100% despite significant ischemia 
in regions of the body. Although NIRS directly measures tissue 
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FigURe 3 | Plot of the average correlation between the blood 
pressure and cerebral oxygenation. Note the lack of correlation over the 
range of “normal” blood pressure and increased correlation at the extreme 
values, representing loss of autoregulation. The optimal MAP is denoted with 
an asterisk.

FigURe 2 | Absorption spectra of light for oxy- and deoxyhemoglobin. 
Note the decreased absorption by oxyhemoglobin in the infrared band 
(approximately 700 nm).
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oxygenation, it is highly correlated with measures of blood flow 
made by other measures (39), making it an attractive proxy for 
more invasive alternatives.

While other factors, such as method of respiratory sup-
port (non-invasive, invasive, and high-frequency oscillatory 
ventilation), do not directly affect cerebral oxygenation, NIRS 
measurements have been used in a variety of studies to optimize 
respiratory support including prediction of extubation failure 
(40), an alternative to pulse oximetry for titration of supplemental 
oxygen (41), or early detection of hypercapnia (42).

Even with advancing technology, the function of the autoregu-
latory system cannot be measured directly. Instead, techniques 
have evolved, which derive function by measuring how an input 
signal (arterial blood pressure) is shaped and altered into the out-
put (CBF). Optimal autoregulation would maintain steady-state 
CBF, despite changes in systemic blood pressure, while impaired 
autoregulation would be manifested by a high degree of correla-
tion between changes in the blood pressure and changes in CBF. 
Two different approaches to utilizing NIRS data to quantify the 
autoregulatory system have emerged in the literature.

One approach utilizes time-domain analysis, examining the 
correlation between the measured values of blood pressure and 
cerebral saturations. This approach has been extensively studied 
and optimized by Lee et al. (43–50). In this approach, the cor-
relation between short segments of blood pressure and NIRS 
data is continuously calculated. The mean correlation value is 
then calculated for each possible blood pressure value and sorted 
into “bins.” The resulting output (Figure 3) is reminiscent of the 
autoregulation curve shown in Figure  2 with high correlation 
values at extremes of blood pressure and 0 or negative correlation 
values in the “normal” range of blood pressure (Figure 3).

An alternate approach utilizes frequency-domain analysis, 
examining the correlation between low-frequency oscillations in 
the blood pressure and those in CBF. Several different research 
groups have utilized spectral coherence, a statistical method 
for comparing the relationship between two signals (20, 51, 52) 
with resulting values between 0 (no coherence) and 1 (perfect 

coherence). By setting a threshold of 0.5, researchers were able 
to calculate the proportion of time that infants were “pressure-
passive.” This approach is advantageous in that it is able to meas-
ure autoregulation as a dynamic system; however, the nature of 
frequency-domain analysis demands a high degree of precision in 
time synchronization of data capture (53). This pressure-passive 
pattern has been documented to occur in 10–20% of measured 
epochs in VPT infants, and there is a suggestion that it is found 
in association with brain injury (20, 22, 54).

Another frequency-domain approach utilizes transfer func-
tion analysis, which derives the function of the autoregulatory 
system by examining how well the autoregulatory system is able 
to dampen oscillations in systemic blood pressure. Rather than 
using pre-defined thresholds, this technique utilizes natural 
low-frequency fluctuations in both the blood pressure and CBF. 
The resulting output resembles a band pass filter (Figure  4), 
with dampening of low-frequency oscillations around the Mayer 
wave frequency (0.1 Hz). There is also a developmentally linked 
component to this dampening, with increased dampening found 
in infants of increasing gestational age (21).

LiNK BeTweeN DYSFUNCTiON iN 
AUTORegULATiON AND BRAiN iNJURY

There are many interconnected modulators of vascular tone, 
governed by a mix of local and central mechanisms, each of 
which contributes to the overall function of autoregulation. The 
most potent endogenous factors include the partial pressures of 
carbon dioxide and oxygen, and the autonomic nervous system. 
CO2 exerts a direct vasodilatory effect, leading to excessive 
oxygenation, even without supplemental oxygen delivery, if left 
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FigURe 4 | Transfer function gain coefficient calculated between the 
mean arterial blood pressure and cerebral oxygenation. Note the 
increased dampening (more negative value) around 0.1 Hz.
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unchecked (41) with small increases in CO2 leading to profound 
increases in CBF. Oxygen, or more specifically hypoxia, provides 
a similar response; the degree of vasodilation is inversely corre-
lated with the partial pressure of oxygen. Acute hypoxia can lead 
to dramatic increasing in vasodilation, and thus CBF (55). The 
autonomic nervous also plays an important role, with counter-
balancing release of nitric oxide and catecholamines in response 
to sympathetic and parasympathetic stimulation (56).

As a result of this constellation of factors, maintenance of 
stable CBF in the vulnerable preterm infant is tenuous. Many 
complicating clinical factors have been linked to causing or 
worsening the dysfunction of the autoregulatory system includ-
ing hypotension (20), hypoxic-ischemia (57, 58), seizures (59), 
inotropic medications (60), and possibly even IVH itself (21).

Brain injury, in the form of hypoxia–ischemia–reperfusion, 
is the common end result of the failure of the autoregulatory 
system, regardless of the contributing factors. Early in the course 
of hospitalization, repeated episodes of ischemia and reperfusion 
likely lead to weakening and then rupture of the fragile germinal 
matrix vessels. Indeed, impaired autoregulation has been clearly 
identified in infants with IVH (20, 21). This mechanism is also 
a likely contributing factor to WMI, where repeated episodes of 
ischemia, from a mismatch of perfusion and metabolic demand, 
accumulate in the periventricular white matter, a region with 
relatively limited vascular supply at this stage of development. 
Repeated events undoubtedly lead to neuronal death and start the 
cascade of events leading to gliosis and fiber loss. The threshold at 
which either form of brain injury occurs is not known at this time.

THe NeXT STeP—TRANSLATiON TO THe 
BeDSiDe

While much has been learned about the function of the cerebro-
vascular autoregulatory system in premature infants and its role 

in the pathogenesis of brain injury, there are a number of key 
factors in translation which remain to be solved before a bedside 
“autoregulation monitor” can be implemented.

Primary among them is developing a consensus on the approach 
to quantification. Although each of the described approaches 
converges on essentially the same results, the approaches are quite 
disparate. The ideal system would be readily reproducible across 
patient populations and clinical confounders. It is possible that 
the best approach is, in fact, a hybrid of above methods, each 
contributing an important component of knowledge.

Another key factor is the source of data for quantification. All 
of the current approaches require the use of NIRS and invasive 
arterial blood pressure monitoring. These sources of informa-
tion allow one to readily model the input and output sides of 
autoregulation, but obtaining these data is costly and may not 
be feasible or practical. Future investigation should focus on 
other sources of data (e.g., ECG and pulse oximetry), which may 
provide some of the same data, without the need for separate, 
invasive equipment.

In addition to the hemodynamic data provided by the 
approaches outlined above, a complete brain monitoring system 
should also include functional measures. This could most eas-
ily be accomplished by the use of amplitude integrated EEG 
(aEEG), which is able to provide information about the general 
background activity of the brain as well as detection of seizures, 
a well-described methodology in the neonatal population (61). 
This information would allow real-time feedback as the effects 
of impaired autoregulation and may help to better discriminate 
between transient asymptomatic aberrations or more consequen-
tial ones (62).

Finally, and most crucially, techniques for manipulating the 
autoregulatory system through hemodynamic intervention 
(e.g., the targeted use of inotrope medications) while guided 
by instantaneous measurement will allow for the advancement 
of neuroprotective strategies. To date, studies have focused on  
ex post facto examination of recorded data. Developing a real-
time autoregulation monitor, along with methods for responding 
to the readout, will be essential for this to be part of a successful 
neuroprotection strategy (63).

CONCLUSiON

In conclusion, the incidence of the two most common forms 
of brain injury in preterm infants, such as IVH and white 
matter, remains distressingly high, and current strategies for 
neuroprotection do not extend beyond acknowledgment of 
static demographic risk factors. One potential target is aug-
menting the function of the cardiovascular system through 
anti-hypotensive therapies, including inotropes and fluid 
resuscitation, yet there is a lack of consistent data as to the lower 
limit of arterial blood pressure, which confers an increased 
risk of brain injury. A bedside monitor capable of demonstrat-
ing the function (dysfunction) of the autoregulatory system, 
aided with integration of a secondary source of information 
such as aEEG, will allow for personalized blood pressure 
management, avoiding overtreatment of “hypotension” in 
infants with intact autoregulation and enhancing recognition 
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of poor cerebrovascular health in infants with “normal” blood 
pressures.
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