79 research outputs found

    Random matrix study for a three-terminal chaotic device

    Full text link
    We perform a study based on a random-matrix theory simulation for a three-terminal device, consisting of chaotic cavities on each terminal. We analyze the voltage drop along one wire with two chaotic mesoscopic cavities, connected by a perfect conductor, or waveguide, with one open mode. This is done by means of a probe, which also consists of a chaotic cavity that measure the voltage in different configurations. Our results show significant differences with respect to the disordered case, previously considered in the literature.Comment: Proccedings of the V Leopoldo Garcia-Colin Mexican Meeting on Mathematical and Experimental Physic

    Typical length scales in conducting disorderless networks

    Full text link
    We take advantage of a recently established equivalence, between the intermittent dynamics of a deterministic nonlinear map and the scattering matrix properties of a disorderless double Cayley tree lattice of connectivity KK, to obtain general electronic transport expressions and expand our knowledge of the scattering properties at the mobility edge. From this we provide a physical interpretation of the generalized localization length.Comment: 12 pages, 3 figure

    Absorption and Direct Processes in Chaotic Wave Scattering

    Full text link
    Recent results on the scattering of waves by chaotic systems with losses and direct processes are discussed. We start by showing the results without direct processes nor absorption. We then discuss systems with direct processes and lossy systems separately. Finally the discussion of systems with both direct processes and loses is given. We will see how the regimes of strong and weak absorption are modified by the presence of the direct processes.Comment: 8 pages, 4 figures, Condensed Matter Physics (IV Mexican Meeting on Mathematical and Experimental Physics), Edited by M. Martinez-Mares and J. A. Moreno-Raz

    Scattering of Elastic Waves in a Quasi-one-dimensional Cavity: Theory and Experiment

    Full text link
    We study the scattering of torsional waves through a quasi-one-dimensional cavity both, from the experimental and theoretical points of view. The experiment consists of an elastic rod with square cross section. In order to form a cavity, a notch at a certain distance of one end of the rod was grooved. To absorb the waves, at the other side of the rod, a wedge, covered by an absorbing foam, was machined. In the theoretical description, the scattering matrix S of the torsional waves was obtained. The distribution of S is given by Poisson's kernel. The theoretical predictions show an excellent agreement with the experimental results. This experiment corresponds, in quantum mechanics, to the scattering by a delta potential, in one dimension, located at a certain distance from an impenetrable wall

    Electromagnetic prompt response in an elastic wave cavity

    Full text link
    A rapid, or prompt response, of an electromagnetic nature, is found in an elastic wave scattering experiment. The experiment is performed with torsional elastic waves in a quasi-one-dimensional cavity with one port, formed by a notch grooved at a certain distance from the free end of a beam. The stationary patterns are diminished using a passive vibration isolation system at the other end of the beam. The measurement of the resonances is performed with non-contact electromagnetic-acoustic transducers outside the cavity. In the Argand plane, each resonance describes a circle over a base impedance curve which comes from the electromagnetic components of the equipment. A model, based on a variation of Poisson's kernel is developed. Excellent agreement between theory and experiment is obtained.Comment: 4 pages, 5 figure

    Chaotic scattering with direct processes: A generalization of Poisson's kernel for non-unitary scattering matrices

    Full text link
    The problem of chaotic scattering in presence of direct processes or prompt responses is mapped via a transformation to the case of scattering in absence of such processes for non-unitary scattering matrices, \tilde S. In the absence of prompt responses, \tilde S is uniformly distributed according to its invariant measure in the space of \tilde S matrices with zero average, < \tilde S > =0. In the presence of direct processes, the distribution of \tilde S is non-uniform and it is characterized by the average (\neq 0). In contrast to the case of unitary matrices S, where the invariant measures of S for chaotic scattering with and without direct processes are related through the well known Poisson kernel, here we show that for non-unitary scattering matrices the invariant measures are related by the Poisson kernel squared. Our results are relevant to situations where flux conservation is not satisfied. For example, transport experiments in chaotic systems, where gains or losses are present, like microwave chaotic cavities or graphs, and acoustic or elastic resonators.Comment: Added two appendices and references. Corrected typo
    • …
    corecore