159 research outputs found

    Kazhdan-Lusztig polynomials, tight quotients and Dyck superpartitions

    Get PDF
    We give an explicit combinatorial product formula for the parabolic Kazhdan–Lusztig polynomials of the tight quotients of the symmetric group. This formula shows that these polynomials are always either zero or a monic power of q and implies the main result in [F. Brenti, Kazhdan–Lusztig and R-polynomials, Youngʼs lattice, and Dyck partitions, Pacific J. Math. 207 (2002) 257–286] on the parabolic Kazhdan–Lusztig polynomials of the maximal quotients. The formula depends on a new class of superpartitions

    Amplitude equations for systems with long-range interactions

    Full text link
    We derive amplitude equations for interface dynamics in pattern forming systems with long-range interactions. The basic condition for the applicability of the method developed here is that the bulk equations are linear and solvable by integral transforms. We arrive at the interface equation via long-wave asymptotics. As an example, we treat the Grinfeld instability, and we also give a result for the Saffman-Taylor instability. It turns out that the long-range interaction survives the long-wave limit and shows up in the final equation as a nonlocal and nonlinear term, a feature that to our knowledge is not shared by any other known long-wave equation. The form of this particular equation will then allow us to draw conclusions regarding the universal dynamics of systems in which nonlocal effects persist at the level of the amplitude description.Comment: LaTeX source, 12 pages, 4 figures, accepted for Physical Review

    Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    Full text link
    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies, described in a companion paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review
    • …
    corecore