284 research outputs found
Comparison of different fractal dimension measuring algorithms for RE-TM M-O films
Noise in magneto-optical recording devices is discussed. In general, it appears that either the divider technique or amplitude spectrum technique may be used interchangeably to measure the fractal dimension (D) in the domain wall structure of ideal images. However, some caveats must be observed for best results. The divider technique is attractive for its simplicity and relatively modest computation requirements. However, it is sensitive to noise, in that noise pixels that touch the domain boundary are interpreted as being part of the boundary, skewing the measurement. Also, it is not useful in measuring nucleation-dominated films or domains that have significant amounts of structure within the interior of the domain wall. The amplitude spectrum method is more complex, and less intuitive than the divider method, and somewhat more expensive to implement computationally. However, since the camera noise tends to be white, the noise can be avoided in the measurement of D by avoiding that portion of the curve that is flat (due to the white noise) when the least squares line is fit to the plot. Also, many image processing software packages include a Fast Fourier Transformation (FFT) facility, while the user will most likely have to write his own edge extraction routine for the divider method. The amplitude spectrum method is a true two dimensional technique that probes the interior of the domain wall, and in fact, can measure arbitrary clusters of domains. It can also be used to measure grey-level images, further reducing processing steps needed to threshold the image
Characterization of magneto-optical media
Amorphous rare earth-transition metal (RE-TM) alloys and compositionally modulated TM/TM films were characterized in terms of their magnetic, magneto-optic, and galvanomagnetic properties. The loop tracer, vibrating sample magnetometer (VSM), and Rutherford Backscattering (RBS) facility were used to characterize and analyze the various properties of these magneto-optical storage media. Kerr effect, ellipticity, coercivity, and anisotropy at various temperatures, magnetoresistance, and resistivity are among the properties measured in Co/Pt films, Co/Pd films, and TbFeCo films
Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys
Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated
Trouble with the Lorentz law of force: Incompatibility with special relativity and momentum conservation
The Lorentz law of force is the fifth pillar of classical electrodynamics,
the other four being Maxwell's macroscopic equations. The Lorentz law is the
universal expression of the force exerted by electromagnetic fields on a volume
containing a distribution of electrical charges and currents. If electric and
magnetic dipoles also happen to be present in a material medium, they are
traditionally treated by expressing the corresponding polarization and
magnetization distributions in terms of bound-charge and bound-current
densities, which are subsequently added to free-charge and free-current
densities, respectively. In this way, Maxwell's macroscopic equations are
reduced to his microscopic equations, and the Lorentz law is expected to
provide a precise expression of the electromagnetic force density on material
bodies at all points in space and time. This paper presents incontrovertible
theoretical evidence of the incompatibility of the Lorentz law with the
fundamental tenets of special relativity. We argue that the Lorentz law must be
abandoned in favor of a more general expression of the electromagnetic force
density, such as the one discovered by A. Einstein and J. Laub in 1908. Not
only is the Einstein-Laub formula consistent with special relativity, it also
solves the long-standing problem of "hidden momentum" in classical
electrodynamics.Comment: 7 pages, 1 figur
Measurement of the magnetic anisotropy energy constants for magneto-optical recording media
Measurement of the magneto-optical polar Kerr effect is performed on rare earth-transition metal (RE-TM) amorphous films using in-plane fields. From this measurement and the measurement of the saturation magnetization using a vibrating sample magnetometer (VSM), the magnetic anisotropy constants are determined. The temperature dependence is presented of the magnetic anisotropy in the range of -175 to 175 C. The results show a dip in the anisotropy near magnetic compensation. This anomaly is explained based on the finite exchange coupling between the rare earth and transition metal subnetworks
Instrumentation of the variable-angle magneto-optic ellipsometer and its application to M-O media and other non-magnetic films
A new and comprehensive dielectric tensor characterization instrument is presented for characterization of magneto-optical recording media and non-magnetic thin films. Random and systematic errors of the system are studied. A series of TbFe, TbFeCo, and Co/Pt samples with different composition and thicknesses are characterized for their optical and magneto-optical properties. The optical properties of several non-magnetic films are also measured
Wavelength dependencies of the Kerr rotation and ellipticity for the magneto-optical recording media
Here we present wavelength dependence measurements of Co/Pd and Co/Pt superlattice samples with different compositions. We explore the relationship between the composition and the magneto-optical spectra. The induced magnetization in the Pt of Co/Pt or in the Pd of Co/Pd samples plays an important role in the magneto-optical activity, and is discussed for the samples measured. The experimental set-up and the samples used are described. The measurement results of one Co/Pt sample and a series of Co/Pd samples are discussed
Theory of Optical Transmission through Elliptical Nanohole Arrays
We present a theory which explains (in the quasistatic limit) the
experimentally observed [R. Gordon, {\it et al}, Phys. Rev. Lett. {\bf 92},
037401 (2004)] squared dependence of the depolarization ratio on the aspect
ratio of the holes, as well as other features of extraordinary light
transition. We calculated the effective dielectric tensor of a metal film
penetrated by elliptical cylindrical holes and found the extraordinarily light
transmission at special frequencies related to the surface plasmon resonances
of the composite film. We also propose to use the magnetic field for getting a
strong polarization effect, which depends on the ratio of the cyclotron to
plasmon frequencies.Comment: 4 pages, 4 figure
- …
