36 research outputs found

    Analytical Concentrations of Some Elements in Seeds and Crude Extracts from Aesculus hippocastanum, by ICP-OES Technique

    Get PDF
    The metal content in some samples of horse chestnut seeds (Aesculus hippocastanum) was monitored over time (years 2016, 2017, 2018, 2019) considering the two most common and representative Mediterranean varieties: the pure species (AHP, which gives white flowers) and a hybrid one (AHH, which gives pink flowers). The selected elemental composition of the samples was determined by applying the ICP-OES technique. Several samples obtained from different preliminary treatments of the peeled seeds were examined, such as: i) floury samples (wild type) mineralized with the wet method; ii) the ashes of both AHP and AHH varieties; iii) the fraction of total inorganic soluble salts (TISS). Furthermore, the hydroalcoholic crude extracts (as a tincture) were obtained according to the official Pharmacopoeia methods, and the relevant results were compared with those of a commercial sample, an herbal product - food supplement of similar characteristics. The main characteristics of this research work underline that the two botanical varieties give different distinctive characters, due to the Fe content (80.05 vs 1.42 mg / 100 g d.s., for AHP and AHH - wild type flour samples, respectively), along with K, Ca, Mn, Ni and Cu, which are more abundant in the AHP samples. Furthermore, the PCA analysis was applied to the experimental dataset in order to classify and discriminate the samples, in relation to their similar botanical origin, but different for the color of the bloom. These results can be useful for the traceability of raw materials potentially intended for the production of auxiliary systems of pharmacological interest.The metal content in some samples of horse chestnut seeds (Aesculus hippocastanum) was monitored over time (years 2016–2019) considering the two most common and representative Mediterranean varieties: the pure species (AHP, which gives white flowers) and a hybrid one (AHH, which gives pink flowers). The selected elemental composition of the samples was determined by applying the Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) technique. Several samples obtained from different preliminary treatments of the peeled seeds were examined, such as: (i) floury samples (wild-type) mineralized with the wet method; (ii) the ashes of both AHP and AHH varieties; (iii) the fraction of total inorganic soluble salts (TISS). Furthermore, the hydroalcoholic crude extracts (as a tincture) were obtained according to the official Pharmacopoeia methods, and the relevant results were compared with those of a commercial sample, an herbal product-food supplement of similar characteristics. The main characteristics of this research work underline that the two botanical varieties give different distinctive characters, due to the Fe content (80.05 vs. 1.42 mg/100 g d.s., for AHP and AHH wild-type flour samples, respectively), along with K, Ca, Mn, Ni and Cu, which are more abundant in the AHP samples. Furthermore, the Principal Component Analysis (PCA) was applied to the experimental dataset in order to classify and discriminate the samples, in relation to their similar botanical origin, but different for the color of the bloom. These results can be useful for the traceability of raw materials potentially intended for the production of auxiliary systems of pharmacological interest

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT
    corecore