111 research outputs found

    Computational General Relativistic Force-Free Electrodynamics: I. Multi-Coordinate Implementation and Testing

    Full text link
    General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole shadows from the galactic center and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe. The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres around compact objects, such as black holes and neutron stars. By this, we probe their role in the formation of high energy phenomena such as magnetar flares and the highly variable teraelectronvolt emission of some active galactic nuclei. In this work, we present numerical strategies capable of modeling fully dynamical force-free magnetospheres of compact astrophysical objects. We provide implementation details and extensive testing of our implementation of general relativistic force-free electrodynamics in Cartesian and spherical coordinates using the infrastructure of the Einstein Toolkit. The employed hyperbolic/parabolic cleaning of numerical errors with full general relativistic compatibility allows for fast advection of numerical errors in dynamical spacetimes. Such fast advection of divergence errors significantly improves the stability of the general relativistic force-free electrodynamics modeling of black hole magnetospheres.Comment: 19 pages, 15 figures, submitted to A&

    Computational General Relativistic Force-Free Electrodynamics: II. Characterization of Numerical Diffusivity

    Full text link
    Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe's most extreme flows of energy. The discretization of Maxwell's equations - needed to make highly magnetized (astro)physical plasma amenable to its numerical modeling - introduces numerical diffusion. It acts as a source of dissipation independent of the system's physical constituents. Understanding the numerical diffusion of scientific codes is the key to classify their reliability. It gives specific limits in which the results of numerical experiments are physical. We aim at quantifying and characterizing the numerical diffusion properties of our recently developed numerical tool for the simulation of general relativistic force-free electrodynamics, by calibrating and comparing it with other strategies found in the literature. Our code correctly models smooth waves of highly magnetized plasma. We evaluate the limits of general relativistic force-free electrodynamics in the context of current sheets and tearing mode instabilities. We identify that the current parallel to the magnetic field (j∥\mathbf{j}_\parallel), in combination with the break-down of general relativistic force-free electrodynamics across current sheets, impairs the physical modeling of resistive instabilities. We find that at least eight numerical cells per characteristic size of interest (e.g. the wavelength in plasma waves or the transverse width of a current sheet) are needed to find consistency between resistivity of numerical and of physical origins. High-order discretization of the force-free current allows us to provide almost ideal orders of convergence for (smooth) plasma wave dynamics. The physical modeling of resistive layers requires suitable current prescriptions or a sub-grid modeling for the evolution of j∥\mathbf{j}_\parallel.Comment: 14 pages, 9 figures, submitted to A&

    First record of the neotropical subgenus Hylaeus (Gongyloprosopis) Snelling, 1982, for Brazil (Hymenoptera: Colletidae).

    Get PDF
    We report the first record of the neotropical bee subgenus Hylaeus (Gongyloprosopis) Snelling, 1982 (Colletidae) for Brazil. Additionally, an overview of the current geographic records for the three known species of the subgenus is presented. We expand the distribution of Hylaeus (Gongyloprosopis) orbicus (Vachal, 1910), the male is illustrated, and the first floral association with Vismia japurensis Reichardt (Hypericaeae) is reported for this species

    Case-matched comparison of cardiovascular outcome in Loeys-Dietz syndrome versus Marfan syndrome

    Get PDF
    Background: Pathogenic variants in TGFBR1, TGFBR2 and SMAD3 genes cause Loeys-Dietz syndrome, and pathogenic variants in FBN1 cause Marfan syndrome. Despite their similar phenotypes, both syndromes may have different cardiovascular outcomes. Methods: Three expert centers performed a case-matched comparison of cardiovascular outcomes. The Loeys-Dietz group comprised 43 men and 40 women with a mean age of 34 +/- 18 years. Twenty-six individuals had pathogenic variants in TGFBR1, 40 in TGFBR2, and 17 in SMAD3. For case-matched comparison we used 83 age and sex-frequency matched individuals with Marfan syndrome. Results: In Loeys-Dietz compared to Marfan syndrome, a patent ductus arteriosus (p = 0.014) was more prevalent, the craniofacial score was higher (p < 0.001), the systemic score lower (p < 0.001), and mitral valve prolapse less frequent (p = 0.003). Mean survival for Loeys-Dietz and Marfan syndrome was similar (75 +/- 3 versus 73 +/- 2 years; p = 0.811). Cardiovascular outcome was comparable between Loeys-Dietz and Marfan syndrome, including mean freedom from proximal aortic surgery (53 +/- 4 versus 48 +/- 3 years; p = 0.589), distal aortic repair (72 +/- 3 versus 67 +/- 2 years; p = 0.777), mitral valve surgery (75 +/- 4 versus 65 +/- 3 years; p = 0.108), and reintervention (20 +/- 3 versus 14 +/- 2 years; p = 0.112). In Loeys-Dietz syndrome, lower age at initial presentation predicted proximal aortic surgery (HR = 0.748; p < 0.001), where receiver operating characteristic analysis identified <= 33.5 years with increased risk. In addition, increased aortic sinus diameters (HR = 6.502; p = 0.001), and higher systemic score points at least marginally (HR = 1.175; p = 0.065) related to proximal aortic surgery in Loeys-Dietz syndrome. Conclusions: Cardiovascular outcome of Loeys-Dietz syndrome was comparable to Marfan syndrome, but the severity of systemic manifestations was a predictor of proximal aortic surgery

    Tyrosine kinase chromosomal translocations mediate distinct and overlapping gene regulation events

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leukemia is a heterogeneous disease commonly associated with recurrent chromosomal translocations that involve tyrosine kinases including BCR-ABL, TEL-PDGFRB and TEL-JAK2. Most studies on the activated tyrosine kinases have focused on proximal signaling events, but little is known about gene transcription regulated by these fusions.</p> <p>Methods</p> <p>Oligonucleotide microarray was performed to compare mRNA changes attributable to BCR-ABL, TEL-PDGFRB and TEL-JAK2 after 1 week of activation of each fusion in Ba/F3 cell lines. Imatinib was used to control the activation of BCR-ABL and TEL-PDGFRB, and TEL-JAK2-mediated gene expression was examined 1 week after Ba/F3-TEL-JAK2 cells were switched to factor-independent conditions.</p> <p>Results</p> <p>Microarray analysis revealed between 800 to 2000 genes induced or suppressed by two-fold or greater by each tyrosine kinase, with a subset of these genes commonly induced or suppressed among the three fusions. Validation by Quantitative PCR confirmed that eight genes (Dok2, Mrvi1, Isg20, Id1, gp49b, Cxcl10, Scinderin, and collagen Vα1(Col5a1)) displayed an overlapping regulation among the three tested fusion proteins. Stat1 and Gbp1 were induced uniquely by TEL-PDGFRB.</p> <p>Conclusions</p> <p>Our results suggest that BCR-ABL, TEL-PDGFRB and TEL-JAK2 regulate distinct and overlapping gene transcription profiles. Many of the genes identified are known to be involved in processes associated with leukemogenesis, including cell migration, proliferation and differentiation. This study offers the basis for further work that could lead to an understanding of the specificity of diseases caused by these three chromosomal translocations.</p
    • …
    corecore