97 research outputs found

    Geomagnetically induced current model in New Zealand across multiple disturbances: Validation and extension to non‐monitored transformers

    Get PDF
    Geomagnetically induced currents (GICs) produced during geomagnetic disturbances pose a risk to the safe operation of electrical power networks. One route to determine the hazard of large and extreme geomagnetic disturbances to national electrical networks is a validated model to predict GIC across the entire network. In this study we improve upon an earlier model for New Zealand, expanding the approach to cover transformers nationwide by making use of multiple storms to develop national scaling factors. We exploit GIC observations which have been made and archived by Transpower New Zealand Ltd, the national grid operator. For some transformers the GIC observations span nearly 2 decades, while for others only a few years. GICs can vary wildly between transformers, particularly due to differences in the electrical network characteristics , transformer properties, and ground conductivity. Modeling these individual transformers is required if an accurate representation of the GIC distribution throughout the network is to be produced. Here we model the GIC during 25 disturbed periods, ranging from large geomagnetic storms to weakly active periods. We adopt the approach of scaling model output using observed GIC power spectra, finding that it improves the correlations between the maximum model and observed GIC by between 10-40% depending on the transformer. The modeled GIC at the 73 transformers which have measured GIC are analyzed to create local and national scaling curves. These are used to allow modeling for transformers without in-situ GIC. We present approaches to utilise this technique for future storms, including non-monitored transformers

    Geomagnetically Induced Current Modeling in New Zealand: Extreme Storm analysis using multiple disturbance scenarios and industry provided hazard magnitudes

    Get PDF
    Geomagnetically induced currents (GICs) are induced in electrical power transmission networks during geomagnetic disturbances. Understanding the magnitude and duration of the GIC expected during worst-case extreme storm scenarios is vital to estimate potential damages and disruptions to power networks. In this study we utilize the magnetic field waveforms measured during three large geomagnetic storms and scale them to expected worst case extreme storm magnitudes. Multiple methods are used to simulate the varying magnitude of the magnetic field across the different latitudes of New Zealand. Modeled GIC is produced for nine extreme storm scenarios, each covering 1-1.5 days in duration. Our industry partners, Transpower New Zealand Ltd provided GIC magnitude and duration levels which represent a risk to their transformers. Using these thresholds various extreme storm scenarios predict between 44 and 115 New Zealand transformers (13-35%) are at risk of damaging levels of GIC. The transformers at risk are largely independent of the extreme storm time-variations, but depend more on the latitude variation scenario. We show that these at-risk transformers are not localized to any specific region of New Zealand but extend across all regions and include most of the major population centers. A peak mean absolute GIC over a 60-minute window of 920-2210 A and an instantaneous one-minute time resolution maximum GIC of 1590-4920 A occurs for a worst-case extreme storm scenario. We believe this is one of the first studies to combine a reasonable worst-case extreme geomagnetic storm with validated GIC modeling and industry-provided GIC risk thresholds

    Transformer-level modeling of geomagnetically induced currents in New Zealand's South Island

    Get PDF
    During space weather events, geomagnetically induced currents (GICs) can be induced in high-voltage transmission networks, damaging individual transformers within substations. A common approach to modeling a transmission network has been to assume that every substation can be represented by a single resistance to Earth. We have extended that model by building a transformer-level network representation of New Zealand’s South Island transmission network. We represent every transformer winding at each earthed substation in the network by its known direct current resistance. Using this network representation significantly changes the GIC hazard assessment, compared to assessments based on the earlier assumption. Further, we have calculated the GIC flowing through a single phase of every individual transformer winding in the network. These transformer-level GIC calculations show variation in GICs between transformers within a substation due to transformer characteristics and connections. The transformer-level GIC calculations alter the hazard assessment by up to an order of magnitude in some places. In most cases the calculated GIC variations match measured variations in GIC flowing through the same transformers. This comparison with an extensive set of observations demonstrates the importance of transformer-level GIC calculations in models used for hazard assessment

    Geomagnetically Induced Current Mitigation in New Zealand: Operational Mitigation Method Development With Industry Input

    Get PDF
    Reducing the impact of Geomagnetically induced currents (GICs) on electrical power networks is an essential step to protect network assets and maintain reliable power transmission during and after storm events. In this study, multiple mitigation strategies are tested during worst-case extreme storm scenarios in order to investigate their effectiveness for the New Zealand transmission network. By working directly with our industry partners, Transpower New Zealand Ltd, a mitigation strategy in the form of targeted line disconnections has been developed. This mitigation strategy proved more effective than previous strategies at reducing GIC magnitudes and durations at transformers at most risk to GIC while still maintaining the continuous supply of power throughout New Zealand. Under this mitigation plan, the average 60-min mean GIC decreased for 27 of the top 30 at-risk transformers, and the total network GIC was reduced by 16%. This updated mitigation has been adopted as an operational procedure in the New Zealand national control room to manage GIC. In addition, simulations show that the installation of 14 capacitor blocking devices at specific transformers reduces the total GIC sum in the network by an additional 16%. As a result of this study Transpower is considering further mitigation in the form of capacitor blockers. We strongly recommend collaborating with the relevant power network providers to develop effective mitigation strategies that reduce GIC and have a minimal impact on power distribution

    Incorporating PET information in radiation therapy planning

    Get PDF
    PET scanning, because of its impressive sensitivity and accuracy, is being incorporated into the standard staging workup for many cancers. These include lung cancer, lymphomas, head and neck cancers, and oesophageal cancers. PET often provides incremental information about the patient’s disease status, adding to the data obtained from structural imaging methods, such as, CT scan or MRI. PET commonly upstages patients into more advanced disease categories. Incorporation of PET information into the radiotherapy planning process has the potential to reduce the risks of geographic miss and can help minimise unnecessary irradiation of normal tissues. The best means of incorporating PET information into radiotherapy planning is uncertain, and considerable effort is being expended in this area of research

    Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver

    Get PDF
    Transpower New Zealand Limited has measured DC currents in transformer neutrals in the New Zealand electrical network at multiple South Island locations. Near-continuous archived DC current data exist since 2001, starting with 12 different substations and expanding from 2009 to include 17 substations. From 2001 to 2015 up to 58 individual transformers were simultaneously monitored. Primarily, the measurements were intended to monitor the impact of the high-voltage DC system linking the North and South Islands when it is operating in “Earth return” mode. However, after correcting for Earth return operation, as described here, the New Zealand measurements provide an unusually long and spatially detailed set of geomagnetically induced current (GIC) measurements. We examine the peak GIC magnitudes observed from these observations during two large geomagnetic storms on 6 November 2001 and 2 October 2013. Currents of ~30–50 A are observed, depending on the measurement location. There are large spatial variations in the GIC observations over comparatively small distances, which likely depend upon network layout and ground conductivity. We then go on to examine the GIC in transformers throughout the South Island during more than 151 h of geomagnetic storm conditions. We compare the GIC to the various magnitude and rate of change components of the magnetic field. Our results show that there is a strong correlation between the magnitude of the GIC and the rate of change of the horizontal magnetic field (Hâ€Č). This correlation is particularly clear for transformers that show large GIC current during magnetic storms

    [(18)F] fluoromisonidazole and [(18)F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study

    Get PDF
    BACKGROUND: Experimental and clinical evidence suggest that hypoxia in solid tumours reduces their sensitivity to conventional treatment modalities modulating response to ionizing radiation or chemotherapeutic agents. The aim of the present study was to show the feasibility of determining radiotherapeutically relevant hypoxia and early tumour response by ([(18)F] Fluoromisonidazole (FMISO) and [(18)F]-2-fluoro-2'-deoxyglucose (FDG) PET. METHODS: Eight patients with non-small-cell lung cancer underwent PET scans. Tumour tissue oxygenation was measured with FMISO PET, whereas tumour glucose metabolism was measured with FDG PET. All PET studies were carried out with an ECAT EXACT 922/47(¼ )scanner with an axial field of view of 16.2 cm. FMISO PET consisted of one static scan of the relevant region, performed 180 min after intravenous administration of the tracer. The acquisition and reconstruction parameters were as follows: 30 min emission scanning and 4 min transmission scanning with 68-Ge/68-Ga rod sources. The patients were treated with chemotherapy, consisting of 2 cycles of gemcitabine (1200 mg/m(2)) and vinorelbine (30 mg/m(2)) followed by concurrent radio- (2.0 Gy/d; total dose 66.0 Gy) and chemotherapy with gemcitabine (300–500 mg/m(2)) every two weeks. FMISO PET and FDG PET were performed in all patients 3 days before and 14 days after finishing chemotherapy. RESULTS: FMISO PET allowed for the qualitative and quantitative definition of hypoxic sub-areas which may correspond to a localization of local recurrences. In addition, changes in FMISO and FDG PET measure the early response to therapy, and in this way, may predict freedom from disease, as well as overall survival. CONCLUSION: These preliminary results warrant validation in larger trials. If confirmed, several novel treatment strategies may be considered, including the early use of PET to evaluate the effectiveness of the selected therapy

    Long-term complete responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin's lymphoma

    Get PDF
    We present the long-term results of 18 chemotherapy relapsed indolent (N=12) or transformed (N=6) NHL patients of a phase II anti-CD20 131I-tositumomab (Bexxar¼) therapy study. The biphasic therapy included two injections of 450 mg unlabelled antibody combined with 131I-tositumomab once as dosimetric and once as therapeutic activity delivering 75 or 65 cGy whole-body radiation dose to patients with normal or reduced platelet counts, respectively. Two patients were not treated due to disease progression during dosimetry. The overall response rate was 81% in the 16 patients treated, including 50% CR/CRu and 31% PR. Median progression free survival of the 16 patients was 22.5 months. Median overall survival has not been reached after a median observation of 48 months. Median PFS of complete responders (CR/CRu) has not been reached and will be greater than 51 months. Short-term side effects were mainly haematological and transient. Among the relevant long-term side effects, one patient previously treated with CHOP chemotherapy died from secondary myelodysplasia. Four patients developed HAMA. In conclusion, 131I-tositumomab RIT demonstrated durable responses especially in those patients who achieved a complete response. Six of eight CR/CRu are ongoing after 46–70 months
    • 

    corecore