57,484 research outputs found
Acid rain: Mesoscale model
A mesoscale numerical model of the Florida peninsula was formulated and applied to a dry, neutral atmosphere. The prospective use of the STAR-100 computer for the submesoscale model is discussed. The numerical model presented is tested under synoptically undisturbed conditions. Two cases, differing only in the direction of the prevailing geostrophic wind, are examined: a prevailing southwest wind and a prevailing southeast wind, both 6 m/sec at all levels initially
Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors
The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses
A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets
This work describes a laboratory plasma experiment and initial results which
should give insight into the magnetic dynamics of accretion discs and jets. A
high-speed multiple-frame CCD camera reveals images of the formation and
helical instability of a collimated plasma, similar to MHD models of disc jets,
and also plasma detachment associated with spheromak formation, which may have
relevance to disc winds and flares. The plasmas are produced by a planar
magnetized coaxial gun. The resulting magnetic topology is dependent on the
details of magnetic helicity injection, namely the force-free state eigenvalue
alpha_gun imposed by the coaxial gun.Comment: accepted for publication in MNRA
Calculating and understanding the value of any type of match evidence when there are potential testing errors
It is well known that Bayesâ theorem (with likelihood ratios) can be used to calculate the impact of evidence, such as a âmatchâ of some feature of a person. Typically the feature of interest is the DNA profile, but the method applies in principle to any feature of a person or object, including not just DNA, fingerprints, or footprints, but also more basic features such as skin colour, height, hair colour or even name. Notwithstanding concerns about the extensiveness of databases of such features, a serious challenge to the use of Bayes in such legal contexts is that its standard formulaic representations are not readily understandable to non-statisticians. Attempts to get round this problem usually involve representations based around some variation of an event tree. While this approach works well in explaining the most trivial instance of Bayesâ theorem (involving a single hypothesis and a single piece of evidence) it does not scale up to realistic situations. In particular, even with a single piece of match evidence, if we wish to incorporate the possibility that there are potential errors (both false positives and false negatives) introduced at any stage in the investigative process, matters become very complex. As a result we have observed expert witnesses (in different areas of speciality) routinely ignore the possibility of errors when presenting their evidence. To counter this, we produce what we believe is the first full probabilistic solution of the simple case of generic match evidence incorporating both classes of testing errors. Unfortunately, the resultant event tree solution is too complex for intuitive comprehension. And, crucially, the event tree also fails to represent the causal information that underpins the argument. In contrast, we also present a simple-to-construct graphical Bayesian Network (BN) solution that automatically performs the calculations and may also be intuitively simpler to understand. Although there have been multiple previous applications of BNs for analysing forensic evidenceâincluding very detailed models for the DNA matching problem, these models have not widely penetrated the expert witness community. Nor have they addressed the basic generic match problem incorporating the two types of testing error. Hence we believe our basic BN solution provides an important mechanism for convincing expertsâand eventually the legal communityâthat it is possible to rigorously analyse and communicate the full impact of match evidence on a case, in the presence of possible error
Spin-state crossover and hyperfine interactions of ferric iron in MgSiO perovskite
Using density functional theory plus Hubbard calculations, we show that
the ground state of (Mg,Fe)(Si,Fe)O perovskite, a major mineral phase in
the Earth's lower mantle, has high-spin ferric iron () at both the
dodecahedral (A) and octahedral (B) site. As the pressure increases, the B-site
iron undergoes a spin-state crossover to the low-spin state (), while
the A-site iron remains in the high-spin state. Our calculation shows that the
B-site spin-state crossover in the pressure range of 40-70 GPa is accompanied
by a noticeable volume reduction and an increase in quadrupole splitting,
consistent with recent X-ray diffraction and M\"ossbauer spectroscopy
measurements. The volume reduction leads to a significant softening in the bulk
modulus, which suggests a possible source of seismic velocity anomalies in the
lower mantle.Comment: 11 pages, 4 figures, 1 tabl
Study of magnetic helicity injection via plasma imaging using a high-speed digital camera
The evolution of a plasma generated by a novel planar coaxial gun is photographed using a state-of-the-art digital camera, which captures eight time-resolved images per discharge. This experiment is designed to study the fundamental physics of magnetic helicity injection, which is an important issue in fusion plasma confinement, as well as solar and astrophysical phenomena such as coronal mass ejections and accretion disk dynamics. The images presented in this paper are not only beautiful but provide a powerful way to understand the global dynamics of the plasma
Quantum Yang-Mills gravity in flat space-time and effective curved space-time for motions of classical objects
Yang-Mills gravity with translational gauge group T(4) in flat space-time
implies a simple self-coupling of gravitons and a truly conserved
energy-momentum tensor. Its consistency with experiments crucially depends on
an interesting property that an `effective Riemannian metric tensor' emerges in
and only in the geometric-optics limit of the photon and particle wave
equations. We obtain Feynman rules for a coupled graviton-fermion system,
including a general graviton propagator with two gauge parameters and the
interaction of ghost particles. The equation of motion of macroscopic objects,
as an N-body system, is demonstrated as the geometric-optics limit of the
fermion wave equation. We discuss a relativistic Hamilton-Jacobi equation with
an `effective Riemann metric tensor' for the classical particles.Comment: 20 pages, to be published in "The European Physical Journal -
Plus"(2011). The final publication is available at http://www.epj.or
- âŠ