2,021 research outputs found

    Completing NLO QCD Corrections for Tree Level Non-Leptonic Delta F = 1 Decays Beyond the Standard Model

    Full text link
    In various extensions of the Standard Model (SM) tree level non-leptonic decays of hadrons receive contributions from new heavy gauge bosons and scalars. Prominent examples are the right-handed W' bosons in left-right symmetric models and charged Higgs (H^\pm) particles in models with extended scalar sector like two Higgs doublet models and supersymmetric models. Even in the case of decays with four different quark flavours involved, to which penguin operators cannot contribute, twenty linearly independent operators, instead of two in the SM, have to be considered. Anticipating the important role of such decays at the LHCb, KEKB and Super-B in Rome and having in mind future improved lattice computations, we complete the existing NLO QCD formulae for these processes by calculating O(alpha_s) corrections to matching conditions for the Wilson coefficients of all contributing operators in the NDR-\bar{MS} scheme. This allows to reduce certain unphysical scale and renormalization scheme dependences in the existing NLO calculations. Our results can also be applied to models with tree-level heavy neutral gauge boson and scalar exchanges in Delta F = 1 transitions and constitute an important part of NLO analyses of those non-leptonic decays to which also penguin operators contribute.Comment: 24 pages, 6 figure

    On the Correlations between Flavour Observables in Minimal U(2)^3 Models

    Full text link
    The stringent correlations between flavour observables in models with CMFV are consistent with the present data except for the correlation Delta M_{s,d}-epsilon_K. Motivated by the recent work of Barbieri et al, we compare the CMFV correlations with the ones present in a special class of models with an approximate global U(2)^3 flavour symmetry, constrained by a minimal set of spurions governing the breakdown of this symmetry and the assumption that only SM operators are relevant in flavour physics. This analog of CMFV to be called MU(2)^3 allows to avoid the Delta M_{s,d}-epsilon_K tension in question because of reduced flavour symmetry and implied non-MFV contributions to Delta M_{s,d}. While the patterns of flavour violation in K meson system is the same as in CMFV models, the CP-violation in B_{s,d} meson systems can deviate from the one in the SM and CMFV models. We point out a stringent triple S_{psi K_S}-S_{psi phi}-|V_ub| correlation in this class of models that could in the future provide a transparent distinction between different MU(2)^3 models and in the context of these models determine |V_ub| by means of precise measurements of S_{psi K_S} and S_{psi phi} with only small hadronic uncertainties. For fixed S_{psi K_S} the correlation between B(B^+ -> tau^+nu_tau) and S_{psi phi} follows. We also find that MU(2)^3 models could in principle accommodate a negative value of S_{psi phi}, provided |V_ub| is found to be in the ballpark of exclusive determinations and the particular MU(2)^3 model provides a 25% enhancement of epsilon_K. A supersymmetric U(2)^3 model worked out in the Barbieri-School appears to satisfy these requirements. However if B(B^+ -> tau^+nu_tau)>1.0 10^{-4} will be confirmed by future experiments only positive S_{psi phi} is allowed in this framework. We summarize briefly the pattern of flavour violation in rare K and B_{s,d} decays in MU(2)^3 models.Comment: 28 pages, 6 figures; v2: Few references and discussion on CP violation in B_s-> mu^+ mu^- added; v3: Several clarifying comments added, conclusions unchanged, version accepted for publication in JHE

    Effects of R-parity violation on direct CP violation in B decays and extraction of γ\gamma

    Get PDF
    In the standard model, direct CP-violating asymmetries for B±π±KB^\pm \to \pi^\pm K are roughly 2% based on perturbative calculation. Rescattering effects might enhance it to at most (20-25)%. We show that lepton-number-violating couplings in supersymmetric models without R-parity are capable of inducing as large as 100% CP asymmetry in this channel. Such effects drastically modify the allowed range of the CKM parameter γ\gamma arising from the combinations of the observed charged and neutral B decays in the πK\pi K modes. With a multichannel analysis in B decays, one can either discover this exciting new physics, or significantly improve the existing constraints on it.Comment: Latex, 5 pages; minor changes, to appear in Phys Rev Let

    Rare K and B Decays in the Littlest Higgs Model without T-Parity

    Get PDF
    We analyze rare K and B decays in the Littlest Higgs (LH) model without T-parity. We find that the final result for the Z^0-penguin contribution contains a divergence that is generated by the one-loop radiative corrections to the currents corresponding to the dynamically broken generators. Including an estimate of these logarithmically enhanced terms, we calculate the branching ratios for the decays K^+ -> pi^+ nu bar nu, K_L -> pi^0 nu bar nu, B_{s,d} -> mu^+ mu^- and B -> X_{s,d} nu bar nu. We find that for the high energy scale f=O(2-3) TeV, as required by the electroweak precision studies, the enhancement of all branching ratios amounts to at most 15% over the SM values. On the technical side we identify a number of errors in the existing Feynman rules in the LH model without T-parity that could have some impact on other analyses present in the literature. Calculating penguin and box diagrams in the unitary gauge, we find divergences in both contributions that are cancelled in the sum except for the divergence mentioned above.Comment: 39 pages, 8 figures, typos corrected, comment on (2.17) and (2.18) added, references added, results unchange

    Brief review of the searches for the rare decays Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and B0μ+μB^0 \rightarrow \mu^+ \mu^-

    Full text link
    The current experimental status of the searches for the very rare decays Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and B0μ+μB^0 \rightarrow \mu^+ \mu^- is discussed. These channels are highly sensitive to various extensions of the Standard Model, specially in the scalar and pseudoscalar sector. The recent, most sensitive measurements from the CDF, ATLAS, CMS and LHCb collaborations are discussed and the combined upper exclusion limit on the branching fractions determined by the LHC experiments is shown to be 4.2×1094.2\times 10^{-9} for Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and 0.8×1090.8\times 10^{-9} for B0μ+μB^0 \rightarrow \mu^+ \mu^-. The implications of these tight bounds on a selected set of New Physics models is sketched.Comment: 20 pages, 15 figures, invited review for Modern Physics Letters

    Exploring CP Violation through B Decays

    Full text link
    The B-meson system provides many strategies to perform stringent tests of the Standard-Model description of CP violation. In this brief review, we discuss implications of the currently available B-factory data on the angles alpha, beta and gamma of the unitarity triangle, emphasize the importance of Bs studies at hadronic B experiments, and discuss new, theoretically clean strategies to determine gamma.Comment: 22 pages, 4 figures, invited brief review for Modern Physics Letters

    Core-collapse supernova simulations: Variations of the input physics

    Full text link
    Spherically symmetric simulations of stellar core collapse and post-bounce evolution are used to test the sensitivity of the supernova dynamics to different variations of the input physics. We consider a state-of-the-art description of the neutrino-nucleon interactions, possible lepton-number changing neutrino reactions in the neutron star, and the potential impact of hydrodynamic mixing behind the supernova shock.Comment: 6 pages, 6 ps figures (in color), to appear in W. Hillebrandt and E. Mueller, eds., Proceedings of the 11th Workshop on "Nuclear Astrophysics" held at Ringberg Castle, February 11-16, 200

    Waiting for Precise Measurements of K^+->pi^+ nu nu and K_L->pi^0 nu nu

    Full text link
    In view of future plans for accurate measurements of the theoretically clean branching ratios Br(K+ -> pi+ nu nu) and Br(KL -> pi0 nu nu), that should take place in the next decade, we collect the relevant formulae for quantities of interest and analyze their theoretical and parametric uncertainties. We point out that in addition to the angle beta in the unitarity triangle (UT) also the angle gamma can in principle be determined from these decays with respectable precision and emphasize in this context the importance of the recent NNLO QCD calculation of the charm contribution to K+ -> pi+ nu nu and of the improved estimate of the long distance contribution by means of chiral perturbation theory. In addition to known expressions we present several new ones that should allow transparent tests of the Standard Model (SM) and of its extensions. While our presentation is centered around the SM, we also discuss models with minimal flavour violation and scenarios with new complex phases in decay amplitudes and meson mixing. We give a brief review of existing results within specific extensions of the SM, in particular the Littlest Higgs Model with T-parity, Z' models, the MSSM and a model with one universal extra dimension. We derive a new "golden" relation between B and K systems that involves (beta,gamma) and Br(KL -> pi0 nu nu) and investigate the virtues of (R_t,beta), (R_b,gamma), (beta,gamma) and (etabar,gamma) strategies for the UT in the context of K -> pi nu nu decays with the goal of testing the SM and its extensions.Comment: 56 pages, 18 figures, Section on Long Distance Contributions, 2 Figures and few References added, Uses Rev Mod Phys Style; Includes new results of NNLO calculation as well as matrix elements, extended and modified sections on new physic
    corecore