441 research outputs found

    The quarter-point quadratic isoparametric element as a singular element for crack problems

    Get PDF
    The quadratic isoparametric elements which embody the inverse square root singularity are used for calculating the stress intensity factors at tips of cracks. The strain singularity at a point or an edge is obtained in a simple manner by placing the mid-side nodes at quarter points in the vicinity of the crack tip or an edge. These elements are implemented in NASTRAN as dummy elements. The method eliminates the use of special crack tip elements and in addition, these elements satisfy the constant strain and rigid body modes required for convergence

    Testing and comparing two self-care-related instruments among older Chinese adults

    Get PDF
    Objectives The study aimed to test and compare the reliability and validity, including sensitivity and specificity of the two self-care-related instruments, the Self-care Ability Scale for the Elderly (SASE), and the Appraisal of Self-care Agency Scale-Revised (ASAS-R), among older adults in the Chinese context. Methods A cross-sectional design was used to conduct this study. The sample consisted of 1152 older adults. Data were collected by a questionnaire including the Chinese version of SASE (SASE-CHI), the Chinese version of ASAS-R (ASAS-R-CHI) and the Exercise of Self-Care Agency scale (ESCA). Homogeneity and stability, content, construct and concurrent validity, and sensitivity and specificity were assessed. Results The Cronbach's alpha (α) of SASE-CHI was 0.89, the item-to-total correlations ranged from r = 0.15 to r = 0.81, and the test-retest correlation coefficient (intra-class correlation coefficient, ICC) was 0.99 (95% CI, 0.99±1.00; P<0.001). The Cronbach's α of ASAS-R-CHI was 0.78, the item-to-total correlations ranged from r = 0.20 to r = 0.65, and the test-retest ICC was 0.95 (95% CI, 0.92±0.96; P<0.001). The content validity index (CVI) of SASE-CHI and ASAS-R-CHI was 0.96 and 0.97, respectively. The findings of exploratory and confirmatory factor analyses (EFA and CFA) confirmed a good construct validity of SASE-CHI and ASAS-R-CHI. The Pearson's rank correlation coefficients, as a measure of concurrent validity, between total score of SASE-CHI and ESCA and ASAS-R-CHI and ESCA were assessed to 0.65 (P<0.001) and 0.62 (P<0.001), respectively. Regarding ESCA as the criterion, the area under the receiver operator characteristic (ROC) curve for the cut-point of SASE-CHI and ASAS-R-CHI were 0.93 (95% CI, 0.91±0.94) and 0.83 (95% CI, 0.80±0.86), respectively. Conclusion There is no significant difference between the two instruments. Each has its own characteristics, but SASE-CHI is more suitable for older adults. The key point is that the users can choose the most appropriate scale according to the specific situation.publishedVersionNivå

    Learning Gradient Fields for Shape Generation

    Full text link
    In this work, we propose a novel technique to generate shapes from point cloud data. A point cloud can be viewed as samples from a distribution of 3D points whose density is concentrated near the surface of the shape. Point cloud generation thus amounts to moving randomly sampled points to high-density areas. We generate point clouds by performing stochastic gradient ascent on an unnormalized probability density, thereby moving sampled points toward the high-likelihood regions. Our model directly predicts the gradient of the log density field and can be trained with a simple objective adapted from score-based generative models. We show that our method can reach state-of-the-art performance for point cloud auto-encoding and generation, while also allowing for extraction of a high-quality implicit surface. Code is available at https://github.com/RuojinCai/ShapeGF.Comment: Published in ECCV 2020 (Spotlight); Project page: https://www.cs.cornell.edu/~ruojin/ShapeGF

    ImageParser: a tool for finite element generation from three-dimensional medical images

    Get PDF
    BACKGROUND: The finite element method (FEM) is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures) of interest (ROIs) may be irregular and fuzzy. METHODS: A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. RESULTS: The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. CONCLUSION: The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information

    On visualizing continuous turbulence scales

    Get PDF
    Turbulent flows are multi‐scale with vortices spanning a wide range of scales continuously. Due to such complexities, turbulence scales are particularly difficult to analyse and visualize. In this work, we present a novel and efficient optimization‐based method for continuous‐scale turbulence structure visualization with scale decomposition directly in the Kolmogorov energy spectrum. To achieve this, we first derive a new analytical objective function based on integration approximation. Using this new formulation, we can significantly improve the efficiency of the underlying optimization process and obtain the desired filter in the Kolmogorov energy spectrum for scale decomposition. More importantly, such a decomposition allows a ‘continuous‐scale visualization’ that enables us to efficiently explore the decomposed turbulence scales and further analyse the turbulence structures in a continuous manner. With our approach, we can present scale visualizations of direct numerical simulation data sets continuously over the scale domain for both isotropic and boundary layer turbulent flows. Compared with previous works on multi‐scale turbulence analysis and visualization, our method is highly flexible and efficient in generating scale decomposition and visualization results. The application of the proposed technique to both isotropic and boundary layer turbulence data sets verifies the capability of our technique to produce desirable scale visualization results

    Automatic multiplanar CT reformatting from trans-axial into left ventricle short-axis view

    Get PDF
    International audienceThe short-axis view defined such that a series of slices are perpendicular to the long-axis of the left ventricle (LV) is one of the most important views in cardiovascular imaging. Raw trans-axial Computed Tomography (CT) images must be often reformatted prior to diagnostic interpretation in short-axis view. The clinical importance of this refor-matting requires the process to be accurate and reproducible. It is often performed after manual localization of landmarks on the image (e.g. LV apex, centre of the mitral valve, etc.) being slower and not fully reproducible as compared to automatic approaches. We propose a fast, automatic and reproducible method to reformat CT images from original trans-axial orientation to short-axis view. A deep learning based seg-mentation method is used to automatically segment the LV endocardium and wall, and the right ventricle epicardium. Surface meshes are then obtained from the corresponding masks and used to automatically detect the shape features needed to find the transformation that locates the cardiac chambers on their standard, mathematically defined, short-axis position. 25 datasets with available manual reformatting performed by experienced cardiac radiologists are used to show that our reformatted images are of equivalent quality

    Particlization in hybrid models

    Full text link
    In hybrid models, which combine hydrodynamical and transport approaches to describe different stages of heavy-ion collisions, conversion of fluid to individual particles, particlization, is a non-trivial technical problem. We describe in detail how to find the particlization hypersurface in a 3+1 dimensional model, and how to sample the particle distributions evaluated using the Cooper-Frye procedure to create an ensemble of particles as an initial state for the transport stage. We also discuss the role and magnitude of the negative contributions in the Cooper-Frye procedure.Comment: 18 pages, 28 figures, EPJA: Topical issue on "Relativistic Hydro- and Thermodynamics"; version accepted for publication, typos and error in Eq.(1) corrected, the purpose of sampling and change from UrQMD to fluid clarified, added discussion why attempts to cancel negative contributions of Cooper-Frye are not applicable her
    corecore