10 research outputs found

    A flexible mathematical model platform for studying branching networks : experimentally validated using the model actinomycete, Streptomyces coelicolor

    Get PDF
    Branching networks are ubiquitous in nature and their growth often responds to environmental cues dynamically. Using the antibiotic-producing soil bacterium Streptomyces as a model we have developed a flexible mathematical model platform for the study of branched biological networks. Streptomyces form large aggregates in liquid culture that can impair industrial antibiotic fermentations. Understanding the features of these could aid improvement of such processes. The model requires relatively few experimental values for parameterisation, yet delivers realistic simulations of Streptomyces pellet and is able to predict features, such as the density of hyphae, the number of growing tips and the location of antibiotic production within a pellet in response to pellet size and external nutrient supply. The model is scalable and will find utility in a range of branched biological networks such as angiogenesis, plant root growth and fungal hyphal networks

    Experimental demonstration of chaotic instability in biological nitrification

    No full text
    Biological nitrification (that is, NH3 -> NO2- -> NO3-) is a key reaction in the global nitrogen cycle (N-cycle); however, it is also known anecdotally to be unpredictable and sometimes fails inexplicably. Understanding the basis of unpredictability in nitrification is critical because the loss or impairment of this function might influence the balance of nitrogen in the environment and also has biotechnological implications. One explanation for unpredictability is the presence of chaotic behavior; however, proving such behavior from experimental data is not trivial, especially in a complex microbial community. Here, we show that chaotic behavior is central to stability in nitrification because of a fragile mutualistic relationship between ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), the two major guilds in nitrification. Three parallel chemostats containing mixed microbial communities were fed complex media for 207 days, and nitrification performance, and abundances of AOB, NOB, total bacteria and protozoa were quantified over time. Lyapunov exponent calculations, supported by surrogate data and other tests, showed that all guilds were sensitive to initial conditions, suggesting broad chaotic behavior. However, NOB were most unstable among guilds and displayed a different general pattern of instability. Further, NOB variability was maximized when AOB were most unstable, which resulted in erratic nitrification including significant NO2- accumulation. We conclude that nitrification is prone to chaotic behavior because of a fragile AOB-NOB mutualism, which must be considered in all systems that depend on this critical reaction
    corecore