15 research outputs found

    Localising occult prostate cancer metastasis with advanced imaging techniques (LOCATE trial): a prospective cohort, observational diagnostic accuracy trial investigating whole-body magnetic resonance imaging in radio-recurrent prostate cancer

    Get PDF
    Background Accurate whole-body staging following biochemical relapse in prostate cancer is vital in determining the optimum disease management. Current imaging guidelines recommend various imaging platforms such as computed tomography (CT), Technetium 99 m (99mTc) bone scan and 18F-choline and recently 68Ga-PSMA positron emission tomography (PET) for the evaluation of the extent of disease. Such approach requires multiple hospital attendances and can be time and resource intensive. Recently, whole-body magnetic resonance imaging (WB-MRI) has been used in a single visit scanning session for several malignancies, including prostate cancer, with promising results, providing similar accuracy compared to the combined conventional imaging techniques. The LOCATE trial aims to investigate the application of WB-MRI for re-staging of patients with biochemical relapse (BCR) following external beam radiotherapy and brachytherapy in patients with prostate cancer. Methods/design The LOCATE trial is a prospective cohort, multi-centre, non-randomised, diagnostic accuracy study comparing WB-MRI and conventional imaging. Eligible patients will undergo WB-MRI in addition to conventional imaging investigations at the time of BCR and will be asked to attend a second WB-MRI exam, 12-months following the initial scan. WB-MRI results will be compared to an enhanced reference standard comprising all the initial, follow-up imaging and non-imaging investigations. The diagnostic performance (sensitivity and specificity analysis) of WB-MRI for re-staging of BCR will be investigated against the enhanced reference standard on a per-patient basis. An economic analysis of WB-MRI compared to conventional imaging pathways will be performed to inform the cost-effectiveness of the WB-MRI imaging pathway. Additionally, an exploratory sub-study will be performed on blood samples and exosome-derived human epidermal growth factor receptor (HER) dimer measurements will be taken to investigate its significance in this cohort. Discussion The LOCATE trial will compare WB-MRI versus the conventional imaging pathway including its cost-effectiveness, therefore informing the most accurate and efficient imaging pathway

    High-resolution YAC fragmentation map of 1q21.

    No full text
    Chromosomal band 1q21 contains a number of genes, constituting the Epidermal differentiation complex (EDC), most of which are involved in the process of terminal differentiation of the human epidermis and implicated in several disorders of keratinization and cancer. The physical map of 1q21 has been refined by generating 400 YAC derivatives. These products have allowed us to localize EDC genes and additional ESTs precisely. The transcriptional map of the region has been extended by positioning 20 ESTs reported to map between D1S442 and D1S305. Eight of the ESTs are localized in two distinct clusters, confirmed by isolating PACs and chromosome 1-specific cosmids. Two of the ESTs correspond to the genes for YL1 and selenium-binding protein, both of which have potential tumor suppressor activity. Through the use of fragmented YACs and bacterial clones, the order of markers and ESTs in the region has been established as follows: cen-A002O32-Bda44g03-Cda10d12-Bdab5d06, H60056, A005K39-D1S442-WI5663-WI7969-Cx40-Cda0g e12-Cda0kh05-A002D26- A008S07-Cda0ff08-D1S498-S100A10-WI7815( THH)-WI7217(FLG)-D1S1664-INV-SPRR2A- LOR-A001X21-D1S305-tel

    Human ovalbumin serpin evolution: phylogenic analysis, gene organization, and identification of new PI8-related genes suggest that two interchromosomal and several intrachromosomal duplications generated the gene clusters at 18q21-q23 and 6p25.

    No full text
    The human ovalbumin (ov) serpins are associated with tumorigenesis, inflammation, and protection from autolysis by granule proteinases. Their genes are located at 18q21 or 6p25, falling into two structurally very similar but distinct categories depending on the presence or absence of a particular exon. Analysis of ov-serpin gene structure provides an opportunity to elucidate the mechanisms contributing to the formation of the larger serpin gene superfamily. Here we have identified a new gene (PI8L1) at 6p25 that is 72% identical to the 18q21 gene PI8. FISH analysis using the 3' untranslated region of PI8 yielded an additional signal at 18q23, separable from the known 18q21.3 signal by the t(1;18)(p32;q23) chromosomal translocation. The presence of more than one PI8-related gene was confirmed by analysis of human genomic DNA using the same probe. Cloning and analysis of PI8 showed that its intron number and phasing are identical to those of the 6p25 genes PI6, PI9, and ELANH2, and it lacks the interhelical variable loop exon found in other 18q21 genes. PCR analysis demonstrated that PI5 at 18q21 also lacks this exon, indicating that it is organized identically to the 6p25 genes. By contrast, PI10 and megsin have this exon and resemble the other 18q21 genes, PLANH2, SCCA-1, and SCCA-2, in structure. Using these data with an ov-serpin phylogenic tree we have constructed, we propose that the ov-serpin gene clusters arose via interchromosomal duplication of PI5 (or a precursor) to 6p25, followed by duplication at 6p25, and a more recent interchromosomal duplication from 6p25 to 18q to yield PI8

    Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex.

    No full text
    We report the precise mapping and characterization of ZIRTL (zinc-iron regulated transporter-like) gene, the first mammalian member of an extensive family of divalent metal ion transporters, comprising IRT1 and ZIP1, ZIP2, ZIP3, and ZIP4 in plants and ZRT1 and ZRT2 in yeast. The human gene maps at the telomeric end of the epidermal differentiation complex (EDC), within chromosomal band 1q21, while the mouse gene maps within the mouse EDC, on mouse chromosome 3, between S100A9 and S100A13. The structure of the human gene has been determined, and message was detected in most adult and fetal tissues including the epidermis. The mouse gene is developmentally regulated and found expressed in fetal and adult suprabasal epidermis, osteoblasts, small intestine, and salivary gland

    Modeling T-cell activation using gene expression profiling and state-space models

    Get PDF
    Motivation: We have used state-space models to reverse engineer transcriptional networks from highly replicated gene expression profiling time series data obtained from a wellestablished model of T-cell activation. State space models are a class of dynamic Bayesian networks that assume that the observed measurements depend on some hidden state variables that evolve according to Markovian dynamics.These hidden variables can capture effects that cannot be measured in a gene expression profiling experiment, e.g. genes that have not been included in the microarray, levels of regulatory proteins, the effects of messenger RNA and protein degradation, etc. Results: Bootstrap confidence intervals are developed for parameters representing ‘gene–gene ’ interactions over time. Our models represent the dynamics of T-cell activation and provide a methodology for the development of rational and experimentally testable hypotheses. Availability: Supplementary data and Matlab computer source code will be made available on the web at the URL given below

    Non HFE-related haemochromatosis: exclusion of the 1q21 zinc-iron regulated transporter-like (ZIRTL) gene in juvenile haemochromatosis.

    No full text
    Haemochromatosis is a common inherited disease of iron metabolism which leads to toxic accumulation of iron in parenchymal tissues. Most patients have mutations in the HFE gene on chromosome 6p. In these classical HFE-related cases, liver biopsy shows iron accumulation primarily in hepatocytes, with Kupffer cell deposition occurring later when hepatocytes are heavily loaded. Rarer non HFE-related haemochromatosis accounts for approximately 5% of patients with haemochromatosis in the UK; in other countries such as Italy, this percentage is higher..
    corecore