1,598 research outputs found

    Apparent slow dynamics in the ergodic phase of a driven many-body localized system without extensive conserved quantities

    Full text link
    We numerically study the dynamics on the ergodic side of the many-body localization transition in a periodically driven Floquet model with no global conservation laws. We describe and employ a numerical technique based on the fast Walsh-Hadamard transform that allows us to perform an exact time evolution for large systems and long times. As in models with conserved quantities (e.g., energy and/or particle number) we observe a slowing down of the dynamics as the transition into the many-body localized phase is approached. More specifically, our data is consistent with a subballistic spread of entanglement and a stretched-exponential decay of an autocorrelation function, with their associated exponents reflecting slow dynamics near the transition for a fixed system size. However, with access to larger system sizes, we observe a clear flow of the exponents towards faster dynamics and can not rule out that the slow dynamics is a finite-size effect. Furthermore, we observe examples of non-monotonic dependence of the exponents with time, with dynamics initially slowing down but accelerating again at even larger times, consistent with the slow dynamics being a crossover phenomena with a localized critical point.Comment: 9 pages, 8 figures; added details on the level statistics and the energy absorptio

    Storage and retrieval of light pulses in atomic media with "slow" and "fast" light

    Full text link
    We present experimental evidence that light storage, i.e. the controlled release of a light pulse by an atomic sample dependent on the past presence of a writing pulse, is not restricted to small group velocity media but can also occur in a negative group velocity medium. A simple physical picture applicable to both cases and previous light storage experiments is discussed.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Inhibition of electromagnetically induced absorption due to excited state decoherence in Rb vapor

    Get PDF
    The explanation presented in [Taichenachev et al, Phys. Rev. A {\bf 61}, 011802 (2000)] according to which the electromagnetically induced absorption (EIA) resonances observed in degenerate two level systems are due to coherence transfer from the excited to the ground state is experimentally tested in a Hanle type experiment observing the parametric resonance on the % D1 line of 87^{87}Rb. While EIA occurs in the F=1F=2F=1\to F^{\prime}=2 transition in a cell containing only RbRb vapor, collisions with a buffer gas (30torr30 torr of NeNe) cause the sign reversal of this resonance as a consequence of collisional decoherence of the excited state. A theoretical model in good qualitative agreement with the experimental results is presented.Comment: 8 pages, 7 figures, submitted to Physical Review

    Temporal build-up of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions

    Get PDF
    The temporal evolution of electromagnetically induced transparency (EIT) and absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate two-level atomic transition is studied for light intensities below saturation. Analytical expression for the transient absorption spectra are given for simple model systems and a model for the calculation of the time dependent response of realistic atomic transitions, where the Zeeman degeneracy is fully accounted for, is presented. EIT and EIA resonances have a similar (opposite sign) time dependent lineshape, however, the EIA evolution is slower and thus narrower lines are observed for long interaction time. Qualitative agreement with the theoretical predictions is obtained for the transient probe absorption on the 85Rb^{85}Rb D2D_{2} line in an atomic beam experiment.Comment: 10 pages, 9 figures. Submitted to Phys. Rev.

    Power-law entanglement growth from typical product states

    Get PDF
    Generic quantum many-body systems typically show a linear growth of the entanglement entropy after a quench from a product state. While entanglement is a property of the wave function, it is generated by the unitary time evolution operator and is therefore reflected in its increasing complexity as quantified by the operator entanglement entropy. Using numerical simulations of a static and a periodically driven quantum spin chain, we show that there is a robust correspondence between the entanglement entropy growth of typical product states with the operator entanglement entropy of the unitary evolution operator, while special product states, e.g. σz\sigma_z basis states, can exhibit faster entanglement production. In the presence of a disordered magnetic field in our spin chains, we show that both the wave function and operator entanglement entropies exhibit a power-law growth with the same disorder-dependent exponent, and clarify the apparent discrepancy in previous results. These systems, in the absence of conserved densities, provide further evidence for slow information spreading on the ergodic side of the many-body localization transition.Comment: 11 pages, 6 figures, Journal versio

    Safety-Aware Apprenticeship Learning

    Full text link
    Apprenticeship learning (AL) is a kind of Learning from Demonstration techniques where the reward function of a Markov Decision Process (MDP) is unknown to the learning agent and the agent has to derive a good policy by observing an expert's demonstrations. In this paper, we study the problem of how to make AL algorithms inherently safe while still meeting its learning objective. We consider a setting where the unknown reward function is assumed to be a linear combination of a set of state features, and the safety property is specified in Probabilistic Computation Tree Logic (PCTL). By embedding probabilistic model checking inside AL, we propose a novel counterexample-guided approach that can ensure safety while retaining performance of the learnt policy. We demonstrate the effectiveness of our approach on several challenging AL scenarios where safety is essential.Comment: Accepted by International Conference on Computer Aided Verification (CAV) 201

    Spectroscopic observation of the rotational Doppler effect

    Get PDF
    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle/EIT coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.Comment: Submited to Physical Review Lette

    Numerical investigation of the quantum fluctuations of optical fields transmitted through an atomic medium

    Full text link
    We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific of (Zeeman) multi-level configurations are identified.Comment: 12 pages 9 figures. Submitted to Physical Review
    corecore