17 research outputs found

    Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy.

    No full text
    PurposeFemale mice have been found to be resistant to streptozotocin (STZ)-induced diabetes, and pre-clinical research related to diabetic complications commonly omits females. The purpose of this study was to develop a method to induce diabetes in female mice, and to determine if retinas of diabetic female mice develop molecular changes and histopathological abnormalities comparable to those which develop in male diabetic mice.MethodsTo induce diabetes, animals of both sexes received daily intraperitoneal (i.p.) injection of STZ for 5 consecutive days at 55 mg/kg BW (a dose that is known to induce diabetes in male mice) or for females, 75 mg/kg BW of STZ. Retinal abnormalities that have been implicated in the development of the retinopathy (superoxide generation and expression of inflammatory proteins, iNOS and ICAM-1) were evaluated at 2 months of diabetes, and retinal capillary degeneration was evaluated at 8 months of diabetes.ResultsDaily i.p. injection of STZ for 5 consecutive days at a concentration of 55 mg/kg BW was sufficient to induce diabetes in 100% of male mice, but only 33% of female mice. However, females did become hyperglycemic when the dose of STZ administered was increased to 75 mg/kg BW. The resulting STZ-induced hyperglycemia in female and male mice was sustained for at least 8 months. After induction of the diabetes, both sexes responded similarly with respect to the oxidative stress, expression of iNOS, and degeneration of retinal capillaries, but differed in the limited population evaluated with respect to expression of ICAM-1.ConclusionsThe resistance of female mice to STZ-induced diabetes can be overcome by increasing the dose of STZ used. Female mice can, and should, be included in pre-clinical studies of diabetes and its complications

    The adult zebrafish retina: In vivo optical sectioning with Confocal Scanning Laser Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography

    No full text
    Non-invasive imaging is an invaluable diagnostic tool in ophthalmology. Two imaging devices, the scanning laser ophthalmoscope (SLO) and spectral domain optical coherence tomography (SDOCT), emerged from the clinical realm to provide research scientists with a real-time view of ocular morphology in living animals. We utilized these two independent imaging modalities in a complementary manner to perform in vivo optical sectioning of the adult zebrafish retina. Due to the very high optical power of the zebrafish lens, the confocal depth of field is narrow, allowing for detailed en face views of specific retinal layers, including the cone mosaic. Moreover, we demonstrate that both native reflectance, as well as fluorescent features observed by SLO, can be combined with axial in-depth information obtained by SDOCT. These imaging approaches can be used to screen for ocular phenotypes and monitor retinal pathology in a non-invasive manner

    Neutrophil-Derived Proteases Contribute to the Pathogenesis of Early Diabetic Retinopathy.

    No full text
    PurposePrevious studies indicate that leukocytes, notably neutrophils, play a causal role in the capillary degeneration observed in diabetic retinopathy (DR), however, the mechanism by which they cause such degeneration is unknown. Neutrophil elastase (NE) is a protease released by neutrophils which participates in a variety of inflammatory diseases. In the present work, we investigated the potential involvement of NE in the development of early DR.MethodsExperimental diabetes was induced in NE-deficient mice (Elane-/-), in mice treated daily with the NE inhibitor, sivelestat, and in mice overexpressing human alpha-1 antitrypsin (hAAT+). Mice were assessed for diabetes-induced retinal superoxide generation, inflammation, leukostasis, and capillary degeneration.ResultsIn mice diabetic for 2 months, deletion of NE or selective inhibition of NE inhibited diabetes-induced retinal superoxide levels and inflammation, and inhibited leukocyte-mediated cytotoxicity of retinal endothelial cells. In mice diabetic for 8 months, genetic deletion of NE significantly inhibited diabetes-induced retinal capillary degeneration.ConclusionsThese results suggest that a protease released from neutrophils contributes to the development of DR, and that blocking NE activity could be a novel therapy to inhibit DR
    corecore