10 research outputs found

    Rings of skew polynomials and Gel'fand-Kirillov conjecture for quantum groups

    Get PDF
    We introduce and study action of quantum groups on skew polynomial rings and related rings of quotients. This leads to a ``q-deformation'' of the Gel'fand-Kirillov conjecture which we partially prove. We propose a construction of automorphisms of certain non-commutaive rings of quotients coming from complex powers of quantum group generators; this is applied to explicit calculation of singular vectors in Verma modules over U_{q}(\gtsl_{n+1}). We finally give a definition of a q−q-connection with coefficients in a ring of skew polynomials and study the structure of quantum group modules twisted by a q−q-connection.Comment: 25 page

    Abelian gerbes as a gauge theory of quantum mechanics on phase space

    Get PDF
    We construct a U(1) gerbe with a connection over a finite-dimensional, classical phase space P. The connection is given by a triple of forms A,B,H: a potential 1-form A, a Neveu-Schwarz potential 2-form B, and a field-strength 3-form H=dB. All three of them are defined exclusively in terms of elements already present in P, the only external input being Planck's constant h. U(1) gauge transformations acting on the triple A,B,H are also defined, parametrised either by a 0-form or by a 1-form. While H remains gauge invariant in all cases, quantumness vs. classicality appears as a choice of 0-form gauge for the 1-form A. The fact that [H]/2i\pi is an integral class in de Rham cohomology is related with the discretisation of symplectic area on P. This is an equivalent, coordinate-free reexpression of Heisenberg's uncertainty principle. A choice of 1-form gauge for the 2-form B relates our construction with generalised complex structures on classical phase space. Altogether this allows one to interpret the quantum mechanics corresponding to P as an Abelian gauge theory.Comment: 18 pages, 1 figure available from the authors upon reques
    corecore