1,230 research outputs found
Fermi acceleration and suppression of Fermi acceleration in a time-dependent Lorentz Gas
We study some dynamical properties of a Lorentz gas. We have considered both
the static and time dependent boundary. For the static case we have shown that
the system has a chaotic component characterized with a positive Lyapunov
Exponent. For the time-dependent perturbation we describe the model using a
four-dimensional nonlinear map. The behaviour of the average velocity is
considered in two situations (i) non-dissipative and (ii) dissipative. Our
results show that the unlimited energy growth is observed for the
non-dissipative case. However, when dissipation, via damping coefficients, is
introduced the senary changes and the unlimited engergy growth is suppressed.
The behaviour of the average velocity is described using scaling approach
Photometric scaling relations of antitruncated stellar discs in S0-Scd galaxies
It has been recently found that the characteristic photometric parameters of
antitruncated discs in S0 galaxies follow tight scaling relations. We
investigate if similar scaling relations are satisfied by galaxies of other
morphological types. We have analysed the trends in several photometric planes
relating the characteristic surface brightness and scalelengths of the breaks
and the inner and outer discs of local antitruncated S0-Scd galaxies, using
published data and fits performed to the surface brightness profiles of two
samples of Type-III galaxies in the R and Spitzer 3.6 microns bands. We have
performed linear fits to the correlations followed by different galaxy types in
each plane, as well as several statistical tests to determine their
significance. We have found that: 1) the antitruncated discs of all galaxy
types from Sa to Scd obey tight scaling relations both in R and 3.6 microns, as
observed in S0s; 2) the majority of these correlations are significant
accounting for the numbers of the available data samples; 3) the trends are
clearly linear when the characteristic scalelengths are plotted on a
logarithmic scale; and 4) the correlations relating the characteristic surface
brightnesses of the inner and outer discs and the breaks with the various
characteristic scalelengths significantly improve when the latter are
normalized to the optical radius of the galaxy. The results suggest that the
scaling relations of Type-III discs are independent of the morphological type
and the presence (or absence) of bars within the observational uncertainties of
the available datasets, although larger and deeper samples are required to
confirm this. The tight structural coupling implied by these scaling relations
impose strong constraints on the mechanisms proposed for explaining the
formation of antitruncated stellar discs in the galaxies across the whole
Hubble Sequence (Abridged).Comment: Accepted for publication in Astronomy & Astrophysics, 18 pages, 12
figures, 7 table
Scaling Invariance in a Time-Dependent Elliptical Billiard
We study some dynamical properties of a classical time-dependent elliptical
billiard. We consider periodically moving boundary and collisions between the
particle and the boundary are assumed to be elastic. Our results confirm that
although the static elliptical billiard is an integrable system, after to
introduce time-dependent perturbation on the boundary the unlimited energy
growth is observed. The behaviour of the average velocity is described using
scaling arguments
- …