65 research outputs found

    Correlation versus randomization of jerky flow in an AlMgScZr alloy using acoustic emission

    Get PDF
    International audienceJerky flow in solids results from collective dynamics of dislocations which gives rise to serrated deformation curves and a complex evolution of the strain heterogeneity. A rich example of this phenomenon is the Portevin-Le Chatelier effect in alloys. The corresponding spatiotemporal patterns showed some universal features which provided a basis for a well-known phenomenological classification. Recent studies revealed peculiar features in both the stress serration sequences and the kinematics of deformation bands in Al-based alloys containing fine microstructure elements, such as nanosize precipitates and/or submicron grains. In the present work, jerky flow of an AlMgScZr alloy is studied using statistical analysis of stress serrations and the accompanying acoustic emission. As in the case of coarse-grained binary AlMg alloys, the amplitude distributions of acoustic events obey a power-law scaling which is usually considered as evidence of avalanchelike dynamics. However, the scaling exponents display specific dependences on the strain and strain rate for the investigated materials. The observed effects bear evidence to a competition between the phenomena of synchronization and randomization of dislocation avalanches, which may shed light on the mechanisms leading to a high variety of jerky flow patterns observed in applied alloys

    Multifractal burst in the spatio-temporal dynamics of jerky flow

    Full text link
    The collective behavior of dislocations in jerky flow is studied in Al-Mg polycrystalline samples subjected to constant strain rate tests. Complementary dynamical, statistical and multifractal analyses are carried out on the stress-time series recorded during jerky flow to characterize the distinct spatio-temporal dynamical regimes. It is shown that the hopping type B and the propagating type A bands correspond to chaotic and self-organized critical states respectively. The crossover between these types of bands is identified by a large spread in the multifractal spectrum. These results are interpreted on the basis of competing scales and mechanisms.Comment: 4 pages, 6 figures To be published in Phys. Rev. Lett. (2001

    Modeling and simulation of the Portevin-Le Chatellier effect

    Get PDF

    The hidden order behind jerky flow

    Get PDF
    Jerky flow, or the Portevin-Le Chatelier effect, is investigated at room temperature by applying statistical, multifractal and dynamical analyses to the unstable plastic flow of polycrystalline Al-Mg alloys with different initial microstructures. It is shown that a chaotic regime is found at medium strain rates, whereas a self-organized critical dynamics is observed at high strain rates. The cross-over between these two regimes is signified by a large spread in the multifractal spectrum. Possible physical mechanisms leading to this wealth of patterning behavior and their dependence on the strain rate and the initial microstructure are discussed

    Unusual behavior of the Portevin - Le Chatelier effect in an AlMg alloy containing precipitates

    Get PDF
    Stress serration patterns and kinematics of deformation bands associated with the Portevin - Le Chatelier effect in an Al-Mg alloy were investigated by analyzing the evolution of the applied stress and axial strain distribution. In contrast to usually observed strain localization behaviors, referring to propagating and static deformation bands at high and low strain rates, respectively, the propagation mode was found to persist in a wide strain-rate rang

    Dislocation transport and intermittency in the plasticity of crystalline solids

    Get PDF
    International audienceWhen envisioned at the relevant length scale, plasticity of crystalline solids consists in the transport of dislocations through the lattice. In this paper, transport of dislocations is evidenced by experimental data gathered from high-resolution extensometry carried out on copper single crystals in tension. Spatiotemporal kinematic fields display spatial correlation through characteristic lines intermittently covered by plastic activity. Intermittency shows temporal correlation and power-law distribution of avalanche size. Interpretation of this phenomenon is proposed within the framework of a field dislocation theory attacking the combined problem of dislocation transport and long-range internal stress field development. Intermittency and transport properties show remarkable independence from sample size, aspect ratio, loading rate, and strain-rate sensitivity of the flow stress

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    Traveling wave solutions in the Burridge-Knopoff model

    Full text link
    The slider-block Burridge-Knopoff model with the Coulomb friction law is studied as an excitable medium. It is shown that in the continuum limit the system admits solutions in the form of the self-sustained shock waves traveling with constant speed which depends only on the amount of the accumulated stress in front of the wave. For a wide class of initial conditions the behavior of the system is determined by these shock waves and the dynamics of the system can be expressed in terms of their motion. The solutions in the form of the periodic wave trains and sources of counter-propagating waves are analyzed. It is argued that depending on the initial conditions the system will either tend to synchronize or exhibit chaotic spatiotemporal behavior.Comment: 12 pages (ReVTeX), 7 figures (Postscript) to be published in Phys. Rev.

    Peculiar spatiotemporal behavior of unstable plastic flow in an AlMgMnScZr alloy with coarse and ultrafine grains

    Get PDF
    The work addresses the effects of nanosize particles and grain refinement on the patterns of stress serrations and kinematics of deformation bands associated with the Portevin–Le Chatelier instability of plastic flow. The results are discussed from the viewpoint of competition between various dynamical modes of plastic deformation associated with collective dynamics of dislocation
    corecore