785 research outputs found

    Hidden IR structures in NGC 40: signpost of an ancient born-again event

    Full text link
    We present the analysis of infrared (IR) observations of the planetary nebula NGC 40 together with spectral analysis of its [WC]-type central star HD 826. Spitzer IRS observations were used to produce spectral maps centred at polycyclic aromatic hydrocarbons (PAH) bands and ionic transitions to compare their spatial distribution. The ionic lines show a clumpy distribution of material around the main cavity of NGC 40, with the emission from [Ar II] being the most extended, whilst the PAHs show a rather smooth spatial distribution. Analysis of ratio maps shows the presence of a toroidal structure mainly seen in PAH emission, but also detected in a Herschel PACS 70 mic image. We argue that the toroidal structure absorbs the UV flux from HD 826, preventing the nebula to exhibit lines of high-excitation levels as suggested by previous authors. We discuss the origin of this structure and the results from the spectral analysis of HD 826 under the scenario of a late thermal pulse.Comment: 10 pages, 10 figures; Accepted to MNRA

    WISE morphological study of Wolf-Rayet nebulae

    Full text link
    We present a morphological study of nebulae around Wolf-Rayet (WR) stars using archival narrow-band optical and Wide-field Infrared Survey Explorer (WISE) infrared images. The comparison among WISE images in different bands and optical images proves to be a very efficient procedure to identify the nebular emission from WR nebulae, and to disentangle it from that of the ISM material along the line of sight. In particular, WR nebulae are clearly detected in the WISE W4 band at 22 μ\mum. Analysis of available mid-IR Spitzer spectra shows that the emission in this band is dominated by thermal emission from dust spatially coincident with the thin nebular shell or most likely with the leading edge of the nebula. The WR nebulae in our sample present different morphologies that we classified into well defined WR bubbles (bubble B{\cal B}-type nebulae), clumpy and/or disrupted shells (clumpy/disrupted C{\cal C}-type nebulae), and material mixed with the diffuse medium (mixed M{\cal M}-type nebulae). The variety of morphologies presented by WR nebulae shows a loose correlation with the central star spectral type, implying that the nebular and stellar evolutions are not simple and may proceed according to different sequences and time-lapses. We report the discovery of an obscured shell around WR35 only detected in the infrared.Comment: 11 pages, 6 figures, plus 23 appendix figures; to appear in Astronomy and Astrophysic

    Rings and arcs around evolved stars. II. The Carbon Star AFGL 3068 and the Planetary Nebulae NGC 6543, NGC 7009 and NGC 7027

    Get PDF
    We present a detailed comparative study of the arcs and fragmented ring-like features in the haloes of the planetary nebulae (PNe) NGC 6543, NGC 7009, and NGC 7027 and the spiral pattern around the carbon star AFGL 3068 using high-quality multi-epoch HST images. This comparison allows us to investigate the connection and possible evolution between the regular patterns surrounding AGB stars and the irregular concentric patterns around PNe. The radial proper motion of these features, ~15 km/s, are found to be consistent with the AGB wind and their linear sizes and inter-lapse times (500-1900 yr) also agree with those found around AGB stars, suggesting a common origin. We find evidence using radiative-hydrodynamic simulations that regular patterns produced at the end of the AGB phase become highly distorted by their interactions with the expanding PN and the anisotropic illumination and ionization patterns caused by shadow instabilities. These processes will disrupt the regular (mostly spiral) patterns around AGB stars, plausibly becoming the arcs and fragmented rings observed in the haloes of PNe.Comment: 13 pages, 9 figures, accepted for publication in MNRA
    • …
    corecore