730 research outputs found

    Quasi-static stop band with flexural metamaterial having zero rotational stiffness

    Get PDF
    Metamaterials realizing stop bands have attracted much attentions recently since they can break-through the well-known mass law. However, achieving the stop band at extremely low frequency has been still a big challenge in the fields of elastic metamaterials. In this paper, we propose a new metamaterial based on the idea of the zero rotational stiffness, to achieve extremely low frequency stop band for flexural elastic waves. Unlike the previous ways to achieve the stop band, we found that the zero rotational stiffness can provide a broad stop band at extremely low frequency, which starts from even almost zero frequency. To achieve the zero rotational stiffness, we propose a new elastic metamaterial consisting of blocks and links with the hinge connection. Analytic developments as well as numerical simulations evidence that this new metamaterial can exhibit extremely low and broad stop band, even at the quasi-static ranges. In addition, the metamaterial is shown to exhibit the negative group velocity at extremely low frequency ranges, as well as the quasi-static stop band, if it is properly designed.ope

    How simple can a model of an empty viral capsid be? Charge distributions in viral capsids

    Full text link
    We investigate and quantify salient features of the charge distributions on viral capsids. Our analysis combines the experimentally determined capsid geometry with simple models for ionization of amino acids, thus yielding the detailed description of spatial distribution for positive and negative charge across the capsid wall. The obtained data is processed in order to extract the mean radii of distributions, surface charge densities and dipole moment densities. The results are evaluated and examined in light of previously proposed models of capsid charge distributions, which are shown to have to some extent limited value when applied to real viruses.Comment: 10 pages, 10 figures; accepted for publication in Journal of Biological Physic

    Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells

    Get PDF
    Current systems for conditional gene deletion within mouse macrophage lineages are limited by ectopic activity or low efficiency. In this study, we generated a Mafb-driven Cre strain to determine whether any dendritic cells (DCs) identified by Zbtb46-GFP expression originate from a Mafb-expressing population. Lineage tracing distinguished macrophages from classical DCs, neutrophils, and B cells in all organs examined. At steady state, Langerhans cells (LCs) were lineage traced but also expressed Zbtb46-GFP, a phenotype not observed in any other population. After exposure to house dust mite antigen, Zbtb46-negative CD64(+) inflammatory cells infiltrating the lung were substantially lineage traced, but Zbtb46-positive CD64(−) cells were not. These results provide new evidence for the unique identity of LCs and challenge the notion that some inflammatory cells are a population of monocyte-derived DCs

    Abnormal Stop Band Behavior Induced by Rotational Resonance in Flexural Metamaterial

    Get PDF
    This paper investigates abnormal stop band behavior of resonance-based flexural elastic metamaterials under the rotational resonance motion. Due to the unique physics of flexural waves, we found that the stop band generated by the rotational resonance motion exhibits peculiar behavior which are quite different from general belief - it is shown that the negativity due to the rotational resonance does not provide any stop bands and the stop band generation due to the rotational resonance is governed by totally different band gap condition. To explain the peculiar behavior, a discrete Timoshenko beam model with both effective mass and rotational inertia as independent variables is introduced, and the wave behaviors of resonance-based flexural elastic metamaterial are precisely and fully described. The unique band gap condition, including the peculiar behavior, is derived with numerical validations. We expect our new model can provide a strong background for various flexural elastic metamaterials which can be effectively applied in various vibration devices

    Direct Telemetry Access

    Get PDF
    Fine-grained network telemetry is becoming a modern datacenter standard and is the basis of essential applications such as congestion control, load balancing, and advanced troubleshooting. As network size increases and telemetry gets more fine-grained, there is a tremendous growth in the amount of data needed to be reported from switches to collectors to enable network-wide view. As a consequence, it is progressively hard to scale data collection systems.We introduce Direct Telemetry Access (DTA), a solution optimized for aggregating and moving hundreds of millions of reports per second from switches into queryable data structures in collectors' memory. DTA is lightweight and it is able to greatly reduce overheads at collectors. DTA is built on top of RDMA, and we propose novel and expressive reporting primitives to allow easy integration with existing state-of-the-art telemetry mechanisms such as INT or Marple.We show that DTA significantly improves telemetry collection rates. For example, when used with INT, it can collect and aggregate over 400M reports per second with a single server, improving over the Atomic MultiLog by up to 16x

    Ontogeny of ependymoglial cells lining the third ventricle in mice.

    Get PDF
    During hypothalamic development, the germinative neuroepithelium gives birth to diverse neural cells that regulate numerous physiological functions in adulthood. Here, we studied the ontogeny of ependymal cells in the mouse mediobasal hypothalamus using the BrdU approach and publicly available single-cell RNAseq datasets. We observed that while typical ependymal cells are mainly produced at E13, tanycyte birth depends on time and subtypes and lasts up to P8. Typical ependymocytes and β tanycytes are the first to arise at the top and bottom of the dorsoventral axis around E13, whereas α tanycytes emerge later in development, generating an outside-in dorsoventral gradient along the third ventricle. Additionally, α tanycyte generation displayed a rostral-to-caudal pattern. Finally, tanycytes mature progressively until they reach transcriptional maturity between P4 and P14. Altogether, this data shows that ependyma generation differs in time and distribution, highlighting the heterogeneity of the third ventricle

    Etude de la faisabilité d'un composite à matrice cimentaire renforcé de fibres de jute

    Get PDF
    Le domaine de la construction doit jouer un rôle important dans la résolution des problèmes environnementaux lies au recyclage et l'exploitation de la biomasse. Dans la catégorie des matériaux cimentaires, différents types de déchets et coproduits issus de l'agriculture ont déjà été utilises, soit sous forme de particules, en remplacement total ou partiel des granulats minéraux, soit sous forme de fibres pour renforcement. Dans cette, étude nous nous sommes intéresses au potentiel d'utilisation des fibres de jute comme éléments de renfort pour mortiers. La fibre de jute a été utilisée en substitution partielle du sable à différents taux, le mortier de référence étant sans fibres. Un protocole d'essais expérimentaux à été mène pour étudier les composites a l'état frais et a l'état durci. La compatibilité chimique des fibres de jute avec le ciment à été évaluée a l'aide des tests d'hydratation qui consistent a enregistrer l'élévation de température au cœur du composite lors des réactions exothermiques des composants du ciment avec l'eau de gâchage. Les résultats révèlent un faible indice d'inhibition confirmant la compatibilité de la fibre avec le ciment. Les essais mécaniques montrent une baisse des performances avec l'augmentation du taux de fibres, mais un gain substantiel en poids.Mots clés: Composite cimentaire - Mortier de fibres - Fibres de jute - Compatibilité chimique. Construction field has to play an important role in resolving environmental problems related to recycling and exploitation of the biomass. In the category of cementitious materials, various types of wastes and byproducts derived from agriculture have already been used, either as particles, in total or partial replacement of mineral aggregates, or as fibers for reinforcement. In this study we were interested at the potential use of jute fibers as reinforcing elements for mortars. The jute fiber was used in partial replacement of sand at different rates; the control mortar was without fibers. A Memorandum of experimental tests was conducted in order to study the composite in fresh and hardened state. The chemical compatibility of jute fibers with cement was evaluated using tests of hydration which consist in recording the temperature rise in the heart of the composite during the exothermic reactions between the components of the cement and the mix water. The results of these tests revealed very low index of inhibition confirming the compatibility of the jute fiber with cement. The mechanical tests showed a decrease in performances according to the increase of fiber and a substantial gain weight.Keywords: Cementitious composite - Fiber mortars - Jute fibers - Chemical compatibility

    Impact of Safety-Related Dose Reductions or Discontinuations on Sustained Virologic Response in HCV-Infected Patients: Results from the GUARD-C Cohort.

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced ≥1 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with ≥1 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not ≥5. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin.This study was sponsored by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Support for third-party writing assistance for this manuscript, furnished by Blair Jarvis MSc, ELS, of Health Interactions, was provided by F. Hoffmann-La Roche Ltd, Basel, Switzerland
    corecore