736 research outputs found

    Remission of severe restless legs syndrome and periodic limb movements in sleep after bilateral excision of multiple foot neuromas: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Restless legs syndrome is a sensorimotor neurological disorder characterized by an urge to move the legs in response to uncomfortable leg sensations. While asleep, 70 to 90 percent of patients with restless legs syndrome have periodic limb movements in sleep. Frequent periodic limb movements in sleep and related brain arousals as documented by polysomnography are associated with poorer quality of sleep and daytime fatigue. Restless legs syndrome in middle age is sometimes associated with neuropathic foot dysesthesias. The causes of restless legs syndrome and periodic limb movements in sleep are unknown, but the sensorimotor symptoms are hypothesized to originate in the central nervous system. We have previously determined that bilateral forefoot digital nerve impingement masses (neuromas) may be a cause of both neuropathic foot dysesthesias and the leg restlessness of restless legs syndrome. To the best of our knowledge, this case is the first report of bilateral foot neuromas as a cause of periodic limb movements in sleep.</p> <p>Case presentation</p> <p>A 42-year-old Caucasian woman with severe restless legs syndrome and periodic limb movements in sleep and bilateral neuropathic foot dysesthesias was diagnosed as having neuromas in the second, third, and fourth metatarsal head interspaces of both feet. The third interspace neuromas represented regrowth (or 'stump') neuromas that had developed since bilateral third interspace neuroma excision five years earlier. Because intensive conservative treatments including repeated neuroma injections and various restless legs syndrome medications had failed, radical surgery was recommended. All six neuromas were excised. Leg restlessness, foot dysesthesias and subjective sleep quality improved immediately. Assessment after 18 days showed an 84 to 100 percent reduction of visual analog scale scores for specific dysesthesias and marked reductions of pre-operative scores of the Pittsburgh sleep quality index, fatigue severity scale, and the international restless legs syndrome rating scale (36 to 4). Polysomnography six weeks post-operatively showed improved sleep efficiency, a marked increase in rapid eye movement sleep, and marked reductions in hourly rates of both periodic limb movements in sleep with arousal (135.3 to 3.3) and spontaneous arousals (17.3 to 0).</p> <p>Conclusion</p> <p>The immediate and near complete remission of symptoms, the histopathology of the excised tissues, and the marked improvement in polysomnographic parameters documented six weeks after surgery together indicate that this patient's severe restless legs syndrome and periodic limb movements in sleep was of peripheral nerve (foot neuroma) origin. Further study of foot neuromas as a source of periodic limb movements in sleep and as a cause of sleep dysfunction in patients with or without concomitant restless legs syndrome, is warranted.</p

    The fluctuation energy balance in non-suspended fluid-mediated particle transport

    Full text link
    Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small

    Aeolian transport layer

    Full text link
    We investigate the airborne transport of particles on a granular surface by the saltation mechanism through numerical simulation of particle motion coupled with turbulent flow. We determine the saturated flux qsq_{s} and show that its behavior is consistent with a classical empirical relation obtained from wind tunnel measurements. Our results also allow to propose a new relation valid for small fluxes, namely, qs=a(uβˆ—βˆ’ut)Ξ±q_{s}=a(u_{*}-u_{t})^{\alpha}, where uβˆ—u_{*} and utu_{t} are the shear and threshold velocities of the wind, respectively, and the scaling exponent is Ξ±β‰ˆ2\alpha \approx 2. We obtain an expression for the velocity profile of the wind distorted by the particle motion and present a dynamical scaling relation. We also find a novel expression for the dependence of the height of the saltation layer as function of the wind velocity.Comment: 4 pages, 4 figure

    Corridors of barchan dunes: stability and size selection

    Get PDF
    Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We show that even very realistic models for solitary dunes do not reproduce these corridors. Instead, two instabilities take place. First, barchans receive a sand flux at their back proportional to their width while the sand escapes only from their horns. Large dunes proportionally capture more than they loose sand, while the situation is reversed for small ones: therefore, solitary dunes cannot remain in a steady state. Second, the propagation speed of dunes decreases with the size of the dune: this leads -- through the collision process -- to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further - yet unknown - mechanisms regulating and selecting the size of dunes.Comment: 13 pages, 13 figures. New version resubmitted to Phys. Rev. E. Pictures of better quality available on reques

    URBAN TERRAIN CLIMATOLOGY AND REMOTE SENSING *

    Full text link
    . Urban areas have been conceived of as monolithic heat islands because traditional ground observation techniques do not lend themselves to more specific analyses. Observations of urban energy-exchange obtained from calibrated electro-optical scanners combined with energy budget simulation techniques provide tools to relate the urban land use mosaic to the heat island phenomenon. Maps of surface energy-related phenomena were made from airborne scanner outputs for selected flightpaths across the city of Baltimore, Maryland. Conditions for the flight time were simulated according to the various types of land use using an energy budget simulation model which lends itself to extrapolation of simulated grid-point conditions into a map form. Maps made by simulation compare sufficiently well with those made by aerial observation to encourage further refinement of the simulation approach.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72392/1/j.1467-8306.1976.tb01110.x.pd

    Long-Horizon Consumption Risk and the Cross-Section of Returns: New Tests and International Evidence

    Full text link
    This paper investigates whether measuring consumption risk over long horizons can improve the empirical performance of the Consumption CAPM for size and value premia in international stock markets (US, UK, and Germany). In order to account for commonalities in size and book-tomarket sorted portfolios, we also include industry portfolios in our set of test assets. Our results show that, contrary to the findings of Parker and Julliard (2005), the model falls short of providing an accurate description of the cross-section of returns under our modified empirical approach. At the same time, however, measuring consumption risk over longer horizons typically yields lower risk-aversion estimates. Thus, our results suggest that more plausible parameter estimates - as opposed to lower pricing errors - can be regarded as the main achievement of the long-horizon Consumption CAPM

    Numerical simulation of turbulent sediment transport, from bed load to saltation

    Full text link
    Sediment transport is studied as a function of the grain to fluid density ratio using two phase numerical sim- ulations based on a discrete element method (DEM) for particles coupled to a continuum Reynolds averaged description of hydrodynamics. At a density ratio close to unity (typically under water), vertical velocities are so small that sediment transport occurs in a thin layer at the surface of the static bed, and is called bed load. Steady, or 'saturated' transport is reached when the fluid borne shear stress at the interface between the mobile grains and the static grains is reduced to its threshold value. The number of grains transported per unit surface is therefore limited by the flux of horizontal momentum towards the surface. However, the fluid velocity in the transport layer remains almost undisturbed so that the mean grain velocity scales with the shear velocity u\ast. At large density ratio (typically in air), the vertical velocities are large enough to make the transport layer wide and dilute. Sediment transport is then called saltation. In this case, particles are able to eject others when they collide with the granular bed, a process called splash. The number of grains transported per unit surface is selected by the balance between erosion and deposition and saturation is reached when one grain is statistically replaced by exactly one grain after a collision, which has the consequence that the mean grain velocity remains independent of u\ast. The influence of the density ratio is systematically studied to reveal the transition between these two transport regimes. Based on the mechanisms identified in the steady case, we discuss the transient of saturation of sediment transport and in particular the saturation time and length. Finally, we investigate the exchange of particles between the mobile and static phases and we determine the exchange time of particles.Comment: 17 pages, 14 figures, submitted to Physics of Fluid

    Nck adapter proteins: functional versatility in T cells

    Get PDF
    Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3Ξ΅ subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation
    • …
    corecore