10,330 research outputs found

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure

    Voltage Control of Exchange Coupling in Phosphorus Doped Silicon

    Full text link
    Motivated by applications to quantum computer architectures we study the change in the exchange interaction between neighbouring phosphorus donor electrons in silicon due to the application of voltage biases to surface control electrodes. These voltage biases create electro-static fields within the crystal substrate, perturbing the states of the donor electrons and thus altering the strength of the exchange interaction between them. We find that control gates of this kind can be used to either enhance, or reduce the strength of the interaction, by an amount that depends both on the magnitude and orientation of the donor separation.Comment: 5 Pages, 5 Figure

    Optically induced spin to charge transduction in donor spin read-out

    Full text link
    The proposed read-out configuration D+D- for the Kane Si:P architecture[Nature 393, 133 (1998)] depends on spin-dependent electron tunneling between donors, induced adiabatically by surface gates. However, previous work has shown that since the doubly occupied donor state is so shallow the dwell-time of the read-out state is less than the required time for measurement using a single electron transistor (SET). We propose and analyse single-spin read-out using optically induced spin to charge transduction, and show that the top gate biases, required for qubit selection, are significantly less than those demanded by the Kane scheme, thereby increasing the D+D- lifetime. Implications for singlet-triplet discrimination for electron spin qubits are also discussed.Comment: 8 pages, 10 figures; added reference, corrected typ

    Probing the band structure of quadri-layer graphene with magneto-phonon resonance

    Full text link
    We show how the magneto-phonon resonance, particularly pronounced in sp2 carbon allotropes, can be used as a tool to probe the band structure of multilayer graphene specimens. Even when electronic excitations cannot be directly observed, their coupling to the E2g phonon leads to pronounced oscillations of the phonon feature observed through Raman scattering experiments with multiple periods and amplitudes detemined by the electronic excitation spectrum. Such experiment and analysis have been performed up to 28T on an exfoliated 4-layer graphene specimen deposited on SiO2, and the observed oscillations correspond to the specific AB stacked 4-layer graphene electronic excitation spectrum.Comment: 11 pages, 5 Fi

    Linking entanglement and quantum phase transitions via density functional theory

    Full text link
    Density functional theory (DFT) is shown to provide a novel conceptual and computational framework for entanglement in interacting many-body quantum systems. DFT can, in particular, shed light on the intriguing relationship between quantum phase transitions and entanglement. We use DFT concepts to express entanglement measures in terms of the first or second derivative of the ground state energy. We illustrate the versatility of the DFT approach via a variety of analytically solvable models. As a further application we discuss entanglement and quantum phase transitions in the case of mean field approximations for realistic models of many-body systems.Comment: 6 pages, 2 figure

    Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays

    Get PDF
    For the first time, we present a simple and robust optical concept to enable precise and sensitive read-out of colorimetric assays in flat lab-on-a-chip devices. The optical guidance of the probe beam through an incorporated measurement chamber to the detector is based on the total internal reflection at V-grooves in the polymer chip. This way, the optical path length through the flat measurement chamber and thus the performance of the measurements are massively enhanced compared to direct (perpendicular) beam incidence. This is demonstrated by a chip-based, colorimetric glucose-assay on serum. Outstanding features are an excellent reproducibility (CV= 1.91 %), a competitive lower limit of detection (cmin = 124 μM), and a high degree of linearity (R2 = 0.998) within a working range extending over nearly three orders of magnitude

    Total energy global optimizations using non orthogonal localized orbitals

    Full text link
    An energy functional for orbital based O(N)O(N) calculations is proposed, which depends on a number of non orthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground state energy, without being trapped at local minima. The present approach overcomes the multiple minima problem present within the original formulation of orbital based O(N)O(N) methods; it therefore makes it possible to perform O(N)O(N) calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wavefunctions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground state energy, and the energy conservation during a molecular dynamics run. Several numerical examples for surfaces, bulk systems and clusters are presented and discussed.Comment: 24 pages, RevTex file, 5 figures available upon reques

    Smart Camp: A Sustainable Digital Ecosystems Environment

    Get PDF
    Seamlessly integrating energy saving with the habits of daily life is an ambitious goal. It becomes even a bigger challenge in a remote area, like the Western-Australian Outback. Harsh environment, high temperatures and hard working conditions demand great exertion from humans and make one’s well-being an integral part of life. To bring both together – environmental sustainability and life quality – is a new interdisciplinary approach in the field of computer science. A “Smart Camp” is a new low rate wireless personal area network (LR-WPAN)-based solution, which provides accommodations in a remote mining site with a smart automation and information system to contribute toenvironmental sustainability and to provide amenities for its inhabitants. The Smart Camp intends to monitor and control household appliances with the aim to reduce the overall energy consumption. Additionally, multi-media components will be implemented, which aim to make the occupants life more pleasant by adding value to their habitat
    corecore