28,268 research outputs found

    Gauged Thirring Model in the Heisenberg Picture

    Get PDF
    We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED3_3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.Comment: 14 pages, LaTex, no figure

    Complete Fusion Enhancement and Suppression of Weakly Bound Nuclei at Near Barrier Energies

    Full text link
    We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross section for 6,7^{6,7}Li + 209^{209}Bi are analyzed in the framework of the DPP approach.Comment: 12 pages, 2 figure

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    Magnetocaloric effect in manganites: metamagnetic transitions for magnetic refrigeration

    Get PDF
    We present a study of the magnetocaloric effect in La5/8-yPryCa3/8MnO3 (y=0.3) and Pr0.5Ca0.09Sr0.41MnO3 manganites. The low temperature state of both ystems is the result of a competition between the antiferromagnetic and ferromagnetic phases. The samples display magnetocaloric effect evidenced in an adiabatic temperature change during a metamagnetic transition from an antiferromagnetic to a ferromagnetic phase . As additional features, La5/8-yPryCa3/8MnO3 exhibits phase separation characterized by the coexistence of antiferromagnetic and ferromagnetic phases and Pr0.5Ca0.09Sr0.41MnO3 displays inverse magnetocaloric effect in which temperature decreases while applying an external magnetic field. In both cases, a significant part of the magnetocaloric effect appears from non-reversible processes. As the traditional thermodynamic description of the effect usually deals with reversible transitions, we developed an alternative way to calculate the adiabatic temperature change in terms of the change of the relative ferromagnetic fraction induced by magnetic field. To evaluate our model, we performed direct measurement of the sample's adiabatic temperature change by means of a differential thermal analysis. An excellent agreement has been obtained between experimental and calculated data. These results show that metamagnetic transition in manganites play an important role in the study of magnetic refrigeration.Comment: Acepted to be published in Applied Physics Letter

    Supersymmetric Construction of W-Algebras from Super Toda and Wznw Theories

    Full text link
    A systematic construction of super W-algebras in terms of the WZNW model based on a super Lie algebra is presented. These are shown to be the symmetry structure of the super Toda models, which can be obtained from the WZNW theory by Hamiltonian reduction. A classification, according to the conformal spin defined by an improved energy-momentum tensor, is dicussed in general terms for all super Lie algebras whose simple roots are fermionic . A detailed discussion employing the Dirac bracket structure and an explicit construction of W-algebras for the cases of OSP(1,2)OSP(1,2), OSP(2,2)OSP(2,2) , OSP(3,2)OSP(3,2) and D(2,1α)D(2,1 \mid \alpha ) are given. The N=1N=1 and N=2N=2 super conformal algebras are discussed in the pertinent cases.Comment: 24 page

    Continuum-continuum coupling and polarization potentials for weakly bound system

    Full text link
    We investigate the influence of couplings among continuum states in collisions of weakly bound nuclei. For this purpose, we compare cross sections for complete fusion, breakup and elastic scattering evaluated by continuum discretized coupled channel (CDCC) calculations, including and not including these couplings. In our study, we discuss this influence in terms of the polarization potentials that reproduce the elastic wave function of the coupled coupled channel method in single channel calculations. We find that the inclusion of couplings among the continuum states renders the real part of the polarization potential more repulsive, whereas it leads to weaker apsorption to the breakup channel. We show that the non-inclusion of continuum-continuum couplings in CDCC calculations may not lead to qualitative and quantitative wrong conclusions.Comment: 4 pages, 4 figures. Submitted to Phys. Rev.

    Structural properties of crumpled cream layers

    Full text link
    The cream layer is a complex heterogeneous material of biological origin which forms spontaneously at the air-milk interface. Here, it is studied the crumpling of a single cream layer packing under its own weight at room temperature in three-dimensional space. The structure obtained in these circumstances has low volume fraction and anomalous fractal dimensions. Direct means and noninvasive NMR imaging technique are used to investigate the internal and external structure of these systems.Comment: 9 pages, 4 figures, accepted in J. Phys. D: Appl. Phy
    corecore