28,268 research outputs found
Gauged Thirring Model in the Heisenberg Picture
We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg
picture. In this context we evaluate the vacuum polarization tensor as well as
the corrected gauge boson propagator and address the issues of generation of
mass and dynamics for the gauge boson (in the limits of QED and Thirring
model as a gauge theory, respectively) due to the radiative corrections.Comment: 14 pages, LaTex, no figure
Complete Fusion Enhancement and Suppression of Weakly Bound Nuclei at Near Barrier Energies
We consider the influence of breakup channels on the complete fusion of
weakly bound systems in terms of dynamic polarization potentials. It is argued
that the enhancement of the cross section at sub-barrier energies may be
consistent with recent experimental observations that nucleon transfer, often
leading to breakup, is dominant compared to direct breakup. The main trends of
the experimental complete fusion cross section for Li + Bi are
analyzed in the framework of the DPP approach.Comment: 12 pages, 2 figure
Plastic Deformation of 2D Crumpled Wires
When a single long piece of elastic wire is injected trough channels into a
confining two-dimensional cavity, a complex structure of hierarchical loops is
formed. In the limit of maximum packing density, these structures are described
by several scaling laws. In this paper it is investigated this packing process
but using plastic wires which give origin to completely irreversible structures
of different morphology. In particular, it is studied experimentally the
plastic deformation from circular to oblate configurations of crumpled wires,
obtained by the application of an axial strain. Among other things, it is shown
that in spite of plasticity, irreversibility, and very large deformations,
scaling is still observed.Comment: 5 pages, 6 figure
Magnetocaloric effect in manganites: metamagnetic transitions for magnetic refrigeration
We present a study of the magnetocaloric effect in La5/8-yPryCa3/8MnO3
(y=0.3) and Pr0.5Ca0.09Sr0.41MnO3 manganites. The low temperature state of both
ystems is the result of a competition between the antiferromagnetic and
ferromagnetic phases. The samples display magnetocaloric effect evidenced in an
adiabatic temperature change during a metamagnetic transition from an
antiferromagnetic to a ferromagnetic phase . As additional features,
La5/8-yPryCa3/8MnO3 exhibits phase separation characterized by the coexistence
of antiferromagnetic and ferromagnetic phases and Pr0.5Ca0.09Sr0.41MnO3
displays inverse magnetocaloric effect in which temperature decreases while
applying an external magnetic field. In both cases, a significant part of the
magnetocaloric effect appears from non-reversible processes. As the traditional
thermodynamic description of the effect usually deals with reversible
transitions, we developed an alternative way to calculate the adiabatic
temperature change in terms of the change of the relative ferromagnetic
fraction induced by magnetic field. To evaluate our model, we performed direct
measurement of the sample's adiabatic temperature change by means of a
differential thermal analysis. An excellent agreement has been obtained between
experimental and calculated data. These results show that metamagnetic
transition in manganites play an important role in the study of magnetic
refrigeration.Comment: Acepted to be published in Applied Physics Letter
Supersymmetric Construction of W-Algebras from Super Toda and Wznw Theories
A systematic construction of super W-algebras in terms of the WZNW model
based on a super Lie algebra is presented. These are shown to be the symmetry
structure of the super Toda models, which can be obtained from the WZNW theory
by Hamiltonian reduction. A classification, according to the conformal spin
defined by an improved energy-momentum tensor, is dicussed in general terms for
all super Lie algebras whose simple roots are fermionic . A detailed discussion
employing the Dirac bracket structure and an explicit construction of
W-algebras for the cases of , , and are given. The and super conformal algebras are discussed
in the pertinent cases.Comment: 24 page
Continuum-continuum coupling and polarization potentials for weakly bound system
We investigate the influence of couplings among continuum states in
collisions of weakly bound nuclei. For this purpose, we compare cross sections
for complete fusion, breakup and elastic scattering evaluated by continuum
discretized coupled channel (CDCC) calculations, including and not including
these couplings. In our study, we discuss this influence in terms of the
polarization potentials that reproduce the elastic wave function of the coupled
coupled channel method in single channel calculations. We find that the
inclusion of couplings among the continuum states renders the real part of the
polarization potential more repulsive, whereas it leads to weaker apsorption to
the breakup channel. We show that the non-inclusion of continuum-continuum
couplings in CDCC calculations may not lead to qualitative and quantitative
wrong conclusions.Comment: 4 pages, 4 figures. Submitted to Phys. Rev.
Structural properties of crumpled cream layers
The cream layer is a complex heterogeneous material of biological origin
which forms spontaneously at the air-milk interface. Here, it is studied the
crumpling of a single cream layer packing under its own weight at room
temperature in three-dimensional space. The structure obtained in these
circumstances has low volume fraction and anomalous fractal dimensions. Direct
means and noninvasive NMR imaging technique are used to investigate the
internal and external structure of these systems.Comment: 9 pages, 4 figures, accepted in J. Phys. D: Appl. Phy
- …