2,926 research outputs found
MCC level C formulation requirements. Shuttle TAEM targeting
The level C requirements for the shuttle orbiter terminal area energy management (TAEM) guidance and flight control functions to be incorporated into the Mission Control Center entry profile planning processor are described. This processor is used for preentry evaluation of the entry through landing maneuvers, and includes a simplified three degree-of-freedom model of the body rotational dynamics that is necessary to account for the effects of attitude response on the trajectory dynamics. This simulation terminates at TAEM-autoland interface
MCC level C formulation requirements. Shuttle TAEM guidance and flight control, STS-1 baseline
The TAEM guidance and body rotational dynamics models required for the MCC simulation of the TAEM mission phase are defined. This simulation begins at the end of the entry phase and terminates at TAEM autoland interface. The logic presented is the required configuration for the first shuttle orbital flight (STS-1). The TAEM guidance is simulated in detail. The rotational dynamics simulation is a simplified model that assumes that the commanded rotational rates can be achieved in the integration interval. Thus, the rotational dynamics simulation is essentially a simulation of the autopilot commanded rates and integration of these rates to determine orbiter attitude. The rotational dynamics simulation also includes a simulation of the speedbrake deflection. The body flap and elevon deflections are computed in the orbiter aerodynamic simulation
Generation of ultra-short light pulses by a rapidly ionizing thin foil
A thin and dense plasma layer is created when a sufficiently strong laser
pulse impinges on a solid target. The nonlinearity introduced by the
time-dependent electron density leads to the generation of harmonics. The pulse
duration of the harmonic radiation is related to the risetime of the electron
density and thus can be affected by the shape of the incident pulse and its
peak field strength. Results are presented from numerical
particle-in-cell-simulations of an intense laser pulse interacting with a thin
foil target. An analytical model which shows how the harmonics are created is
introduced. The proposed scheme might be a promising way towards the generation
of attosecond pulses.
PACS number(s): 52.40.Nk, 52.50.Jm, 52.65.RrComment: Second Revised Version, 13 pages (REVTeX), 3 figures in ps-format,
submitted for publication to Physical Review E, WWW:
http://www.physik.tu-darmstadt.de/tqe
The wall shear rate distribution for flow in random sphere packings
The wall shear rate distribution P(gamma) is investigated for pressure-driven
Stokes flow through random arrangements of spheres at packing fractions 0.1 <=
phi <= 0.64. For dense packings, P(gamma) is monotonic and approximately
exponential. As phi --> 0.1, P(gamma) picks up additional structure which
corresponds to the flow around isolated spheres, for which an exact result can
be obtained. A simple expression for the mean wall shear rate is presented,
based on a force-balance argument.Comment: 4 pages, 3 figures, 1 table, RevTeX 4; significantly revised with
significantly extended scop
The Effect of Air on Granular Size Separation in a Vibrated Granular Bed
Using high-speed video and magnetic resonance imaging (MRI) we study the
motion of a large sphere in a vertically vibrated bed of smaller grains. As
previously reported we find a non-monotonic density dependence of the rise and
sink time of the large sphere. We find that this density dependence is solely
due to air drag. We investigate in detail how the motion of the intruder sphere
is influenced by size of the background particles, initial vertical position in
the bed, ambient pressure and convection. We explain our results in the
framework of a simple model and find quantitative agreement in key aspects with
numerical simulations to the model equations.Comment: 14 pages, 16 figures, submitted to PRE, corrected typos, slight
change
Squeezed light from spin squeezed atoms
We propose to produce pulses of strongly squeezed light by Raman scattering
of a strong laser pulse on a spin squeezed atomic sample. We prove that the
emission is restricted to a single field mode which perfectly inherits the
quantum correlations of the atomic system.Comment: 5 pages, 2 figures, revtex4 beta
Li-loaded liquid scintillators produced by direct dissolution of compounds in diisopropylnaphthalene (DIPN)
The paper describes preparation of Li-loaded liquid scintillators by
methods involving direct dissolution of Li salts in the commercial
diisopropylnaphthalene (DIPN) solvent, without the formation of water-in-oil
emulsions. Methods include incorporation of Li that, unlike previously
reported formulations, does not require additions of water or a strong acid
such as hydrochloric acid (HCl). Results of the conducted experiments show that
dissolution of aromatic and aliphatic Li salts in DIPN can be easily
achieved at 0.1- 0.3% by weight of atomic Li, using small additions of
waterless surfactants, or mild carboxylic acids. An alternative way suggests
incorporation of Li as a part of a surfactant molecule that can be
dissolved in DIPN without any solubilizing additions. Proposed methods enable
preparation of efficient Li-loaded liquid scintillators that, at a large
scale of 50 cm, exhibit good pulse shape discrimination (PSD) properties
combined with up to 107% of light output and up to 115% of the attenuation
length measured relative to standard undoped EJ-309 liquid scintillator.Comment: Submitted to Nuclear Instruments and Methods in Physics Research
- …