879 research outputs found

    Error and Attack Tolerance of Layered Complex Networks

    Get PDF
    Many complex systems may be described not by one, but by a number of complex networks mapped one on the other in a multilayer structure. The interactions and dependencies between these layers cause that what is true for a distinct single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of three real-life examples of two-layer complex systems that come from the fields of communication (the Internet), transportation (the European railway system) and biology (the human brain). In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multilayer systems are much more vulnerable to errors and intentional attacks than they seem to be from a single layer perspective.Comment: 5 pages, 3 figure

    Shaking Table Tests and Numerical Simulation of Seismic Response of The Seawall

    Get PDF
    Shaking table tests of a caisson seawall model were conducted to investigate sliding phenomena of the seawall. The response characteristics of the caisson placed on the mound which was fixed to the shaking table were investigated in the six series of experiments with varying the situation of the model; with or without backfill, wave breaking works and water. These test results were utilized to validate a two-dimensional FEM analysis method with joint elements. The numerical model with the finer mesh division and joint elements showed fairly close results with the series of test results, resulting the better representation of the characteristics of sliding and plastic deformation nature of the seawall model

    Supporting User-Defined Functions on Uncertain Data

    Get PDF
    Uncertain data management has become crucial in many sensing and scientific applications. As user-defined functions (UDFs) become widely used in these applications, an important task is to capture result uncertainty for queries that evaluate UDFs on uncertain data. In this work, we provide a general framework for supporting UDFs on uncertain data. Specifically, we propose a learning approach based on Gaussian processes (GPs) to compute approximate output distributions of a UDF when evaluated on uncertain input, with guaranteed error bounds. We also devise an online algorithm to compute such output distributions, which employs a suite of optimizations to improve accuracy and performance. Our evaluation using both real-world and synthetic functions shows that our proposed GP approach can outperform the state-of-the-art sampling approach with up to two orders of magnitude improvement for a variety of UDFs. 1

    Controlling Window Protocols for Time-Constrained Communication in a Multiple Access Environment

    Get PDF
    For many time-constrained communication applications, such as packetized voice, a critical performance measure is the percentage of messages which are transmitted within a given amount of time after their arrival at a sending station. We examine the use of a group random access protocol based on time windows for achieving time-constrained communication in a multiple access environment. First, we formulate a policy for controlling protocol operation in order to minimize the percentage of messages with waiting times greater than some given bound. A semi-Markov decision model is then developed for protocol operation and three of the four optimal control elements of this policy are then determined. Although the semi-Markov decision model can also be used to obtain performance results, the procedure is too computationally expensive to be of practical use. Thus, an alternate performance model based on a centralized queueing system with impatient customers is developed. Protocol performance under the optimal elements of the control policy shows significant improvements over cases in which the protocol is not controlled in this manner. Simulation results are also presented to corroborate the analytic results

    Variability in organ-specific EGFR mutational spectra in tumour epithelium and stroma may be the biological basis for differential responses to tyrosine kinase inhibitors

    Get PDF
    Organ-specific differences in epidermal growth factor receptor (EGFR) mutational spectra and frequencies were found in lung cancer and sporadic and BRCA1/2-related breast cancers. Additionally, we found a high frequency of EGFR mutations in the tumour stroma of these invasive breast carcinomas. Those organ-specific mutational spectra and potential targets in the cancer-associated stroma might influence the efficacy of TKI therapy

    Real-Time Communication in Packet-Switched Networks

    Get PDF
    Abstract The dramatically increased bandwidths and processing capabilities of future high-speed networks make possible many distributed real-time applications, such as sensor-based applications and multimedia services. Since these applications will have tra c characteristics and performance requirements that di er dramatically from those of current data-oriented applications, new communication network architectures and protocols will be required. In this paper we discuss the performance requirements and tra c characteristics of various real-time applications, survey recent developments in the areas of network architecture and protocols for supporting real-time services, and develop frameworks in which these, and future, research e orts can be considered
    corecore