333 research outputs found

    Orbital Evolution of Planets around Intermediate-Mass Giants

    Full text link
    Around low- and intermediate-mass (1.5-3 M_sun) red giants, no planets have been found inside 0.6 AU. Such a paucity is not seen in the case of 1 M_sun main sequence stars. In this study, we examine the possibility that short-period planets were engulfed by their host star evolving off the main sequence. To do so, we have simulated the orbital evolution of planets, including the effects of stellar tide and mass loss, to determine the critical semimajor axis, a_crit, beyond which planets survive the RGB expansion of their host star. We have found that a_crit changes drastically around 2 M_sun: In the lower-mass range, a_crit is more than 1 AU, while a_crit is as small as about 0.2 AU in the higher-mass range. Comparison with measured semimajor axes of known planets suggests that there is a lack of planets that only planet engulfment never accounts for in the higher-mass range. Whether the lack is real affects our understanding of planet formation. Therefore, increasing the number of planet samples around evolved intermediate-mass stars is quite meaningful to confirm robustness of the lack of planets.Comment: 4 pages, 3 figures, Part of PlanetsbeyondMS/2010 proceedings http://arxiv.org/html/1011.660

    On the Formation Age of the First Planetary System

    Full text link
    Recently, it has been observed the extreme metal-poor stars in the Galactic halo, which must be formed just after Pop III objects. On the other hand, the first gas clouds of mass ∼106M⊙\sim 10^6 M_{\odot} are supposed to be formed at z∼ z \sim 10, 20, and 30 for the 1σ1\sigma, 2σ2\sigma and 3σ3\sigma, where the density perturbations are assumed of the standard Λ\LambdaCDM cosmology. If we could apply this gaussian distribution to the extreme small probability, the gas clouds would be formed at z∼ z \sim 40, 60, and 80 for the 4σ4\sigma, 6σ6\sigma, and 8σ8\sigma. The first gas clouds within our galaxy must be formed around z∼40z\sim 40. Even if the gas cloud is metal poor, there is a lot of possibility to form the planets around such stars. The first planetary systems could be formed within ∼6×107\sim 6\times 10^7 years after the Big Bang in the universe. Even in our galaxies, it could be formed within ∼1.7×108\sim 1.7\times 10^8 years. It is interesting to wait the observations of planets around metal-poor stars. For the panspermia theory, the origin of life could be expected in such systems.Comment: 5 pages,Proceedings IAU Symposium No. 249, 2007, Exoplanets:Y-S. Sun, S. Ferraz-Mello and J.-L, Zhou, eds. (p325

    Construction of N = 2 Chiral Supergravity Compatible with the Reality Condition

    Get PDF
    We construct N = 2 chiral supergravity (SUGRA) which leads to Ashtekar's canonical formulation. The supersymmetry (SUSY) transformation parameters are not constrained at all and auxiliary fields are not required in contrast with the method of the two-form gravity. We also show that our formulation is compatible with the reality condition, and that its real section is reduced to the usual N = 2 SUGRA up to an imaginary boundary term.Comment: 16 pages, late

    Light-cone Gauge NSR Strings in Noncritical Dimensions II -- Ramond Sector

    Get PDF
    Light-cone gauge superstring theory in noncritical dimensions corresponds to a worldsheet theory with nonstandard longitudinal part in the conformal gauge. The longitudinal part of the worldsheet theory is a superconformal field theory called X^{\pm} CFT. We show that the X^{\pm} CFT combined with the super-reparametrization ghost system can be described by free variables. It is possible to express the correlation functions in terms of these free variables. Bosonizing the free variables, we construct the spin fields and BRST invariant vertex operators for the Ramond sector in the conformal gauge formulation. By using these vertex operators, we can rewrite the tree amplitudes of the noncritical light-cone gauge string field theory, with external lines in the (R,R) sector as well as those in the (NS,NS) sector, in a BRST invariant way.Comment: 33 pages; v2: minor modification

    N = 3 chiral supergravity compatible with the reality condition and higher N chiral Lagrangian density

    Get PDF
    We obtain N = 3 chiral supergravity (SUGRA) compatible with the reality condition by applying the prescription of constructing the chiral Lagrangian density from the usual SUGRA. The N=3N = 3 chiral Lagrangian density in first-order form, which leads to the Ashtekar's canonical formulation, is determined so that it reproduces the second-order Lagrangian density of the usual SUGRA especially by adding appropriate four-fermion contact terms. We show that the four-fermion contact terms added in the first-order chiral Lagrangian density are the non-minimal terms required from the invariance under first-order supersymmetry transformations. We also discuss the case of higher N theories, especially for N = 4 and N = 8.Comment: 20 pages, Latex, some more discussions and new references added, some typos corrected, accepted for publication in Physical Review

    Supersymmetry algebra in N = 1 chiral supergravity

    Get PDF
    We consider the supersymmetry (SUSY) transformations in the chiral Lagrangian for N=1N = 1 supergravity (SUGRA) with the complex tetrad following the method used in the usual N=1N = 1 SUGRA, and present the explicit form of the SUSY trasformations in the first-order form. The SUSY transformations are generated by two independent Majorana spinor parameters, which are apparently different from the constrained parameters employed in the method of the 2-form gravity. We also calculate the commutator algebra of the SUSY transformations on-shell.Comment: 10 pages, late

    Minimal Off-Shell Version of N = 1 Chiral Supergravity

    Get PDF
    We construct the minimal off-shell formulation of N = 1 chiral supergravity (SUGRA) introducing a complex antisymmetric tensor field BμνB_{\mu \nu} and a complex axial-vector field AμA_{\mu} as auxiliary fields. The resulting algebra of the right- and left-handed supersymmetry (SUSY) transformations closes off shell and generates chiral gauge transforamtions and vector gauge transformations in addition to the transformations which appear in the case without auxiliary fields.Comment: 9 pages, late

    Multiphoton Transitions in a Spin System Driven by Strong Bichromatic Field

    Full text link
    EPR transient nutation spectroscopy is used to measure the effective field (Rabi frequency) for multiphoton transitions in a two-level spin system bichromatically driven by a transverse microwave (MW) field and a longitudinal radio-frequency (RF) field. The behavior of the effective field amplitude is examined in the case of a relatively strong MW field, when the derivation of the effective Hamiltonian cannot be reduced to first-order perturbation theory in w_{1} / w_{rf} (w_{1} is the microwave Rabi frequency, w_{rf} is the RF frequency). Experimental results are consistently interpreted by taking into account the contributions of second and third order in w_{1} / w_{rf} evaluated by Krylov-Bogolyubov-Mitropolsky averaging. In the case of inhomogeneously broadened EPR line, the third-order correction modifies the nutation frequency, while the second-order correction gives rise to a change in the nutation amplitude due to a Bloch-Siegert shift.Comment: 7 pages, 6 figure

    Canonical formulation of N = 2 supergravity in terms of the Ashtekar variable

    Full text link
    We reconstruct the Ashtekar's canonical formulation of N = 2 supergravity (SUGRA) starting from the N = 2 chiral Lagrangian derived by closely following the method employed in the usual SUGRA. In order to get the full graded algebra of the Gauss, U(1) gauge and right-handed supersymmetry (SUSY) constraints, we extend the internal, global O(2) invariance to local one by introducing a cosmological constant to the chiral Lagrangian. The resultant Lagrangian does not contain any auxiliary fields in contrast with the 2-form SUGRA and the SUSY transformation parameters are not constrained at all. We derive the canonical formulation of the N = 2 theory in such a manner as the relation with the usual SUGRA be explicit at least in classical level, and show that the algebra of the Gauss, U(1) gauge and right-handed SUSY constraints form the graded algebra, G^2SU(2)(Osp(2,2)). Furthermore, we introduce the graded variables associated with the G^2SU(2)(Osp(2,2)) algebra and we rewrite the canonical constraints in a simple form in terms of these variables. We quantize the theory in the graded-connection representation and discuss the solutions of quantum constraints.Comment: 19 pages, Latex, corrected some typos and added a referenc

    Insights on the Sun birth environment in the context of star-cluster formation in hub-filament systems

    Full text link
    Cylindrical molecular filaments are observed to be the main sites of Sun-like star formation, while massive stars form in dense hubs, at the junction of multiple filaments. The role of hub-filament configurations has not been discussed yet in relation to the birth environment of the solar system and to infer the origin of isotopic ratios of Short-Lived Radionuclides (SLR, such as 26^{26}Al) of Calcium-Aluminum-rich Inclusions (CAIs) observed in meteorites. In this work, we present simple analytical estimates of the impact of stellar feedback on the young solar system forming along a filament of a hub-filament system. We find that the host filament can shield the young solar system from the stellar feedback, both during the formation and evolution of stars (stellar outflow, wind, and radiation) and at the end of their life (supernovae). We show that the young solar system formed along a dense filament can be enriched with supernova ejecta (e.g., 26^{26}Al) during the formation timescale of CAIs. We also propose that the streamers recently observed around protostars may be channeling the SLR-rich material onto the young solar system. We conclude that considering hub-filament configurations as the birth environment of the Sun is important when deriving theoretical models explaining the observed properties of the solar system.Comment: Accepted for publication in The Astrophysical Journal Letter
    • …
    corecore