11 research outputs found

    Identification of Myotropic Neuropeptides from the Brain and Corpus Cardiacum-Corpus Allatum Complex of the Beetle, Zophobas atratus

    Get PDF
    The neuropeptide profiles of the two major neuro-endocrinological organs, brain and retrocerebral complex corpus cardiacum-corpus allatum (CC/CA) of adult beetles, Zophobas atratus Fabricius (Coleoptera:Tenebrionidae) were analyzed by a combination of high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization time of flight tandem mass spectrometry (MALDI TOF/TOF MS). The homological semi-isolated heart bioassay was used to screen HPLC fractions for myotropic activity in tissues, revealing several cardiostimulatory and cardioinhibitory factors from both the brain and CC/CA. Analysis of HPLC fractions by MALDI-TOF MS identified seven mass ions that could be assigned to other known peptides: leucomyosuppressin (LMS), Tribolium castaneum pyrokinin 2, sulfakinin 1, myoinhibitory peptide 4, a truncated NVP-like peptide, Tenebrio molitor AKH and crustacean cardioactive peptide. In addition, two novel peptides, myosuppressin (pEDVEHVFLRFa), which differs from LMS by one amino acid (E for D at position 4) and pyrokinin-like peptide (LPHYTPRLa) were also identified. To establish cardioactive properties of some of the identified peptides, chemical synthesis was carried out and their activities were tested using the heart bioassay

    New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle

    Get PDF
    Three neuropeptides Zopat-MS-2 (pEDVDHVFLRFa), Zopat-SK-1 (pETSDDYGHLRFa) and Zopat-NVPL-4trunc. (GRWGGFA), recently isolated from the neuroendocrine system of the Zophobas atratus beetle, were tested for their myotropic and hyperglycaemic activities in this species. These peptides exerted differentiated dose-dependent and tissue specific physiological effects. Zopat-MS-2 inhibited contractions of the isolated heart, ejaculatory duct, oviduct and hindgut of adult beetles and induced bimodal effects in the heart contractile activity of pupae in vivo. It also increased the haemolymph free sugar level in larvae of this species, apart from myotropic activity. Zopat-SK-1 showed myostimulatory action on the isolated hindgut of the adult beetles, but it decreased contractions of the heart, ejaculatory duct and oviduct. Injections of this peptide at a dose of 2 μg also caused delayed cardioinhibitory effects on the heartbeat of the pupae. Together with the ability to increase free sugar level in the haemolymph of larvae these were new physiological activities of sulfakinins in insects. Zopat-NVPL-4trunc. inhibited the muscle contractions of the two organs: hindgut and ejaculatory duct but it was inactive on the oviduct and the heart of the adult beetles. This peptide also increased free sugar level concentration in the haemolymph of Z. atratus larvae. These physiological actions are the first biological activities discovered for this group of the insect peptides. The present work showed pleiotropic activity of three neuropeptides and indicates that the visceral muscle contractions and the haemolymph sugar homeostasis in Z. atratus are regulated by complex mechanisms

    The search for new biological activities for selected insect peptides

    No full text
    New biological properties of selected insect peptides are presented. The subjects of the investigation included insect oostatic peptides, like Neb-colloostatin (I) and Neb-TMOF(II), and/or insect peptides with antiviral or antitumor activity, such as alloferon (III) and its analogues modified at position 1 of the peptide chain. In the study was also included the oligopeptide Any-GS (VII) and its truncated analogues. The peptides were tested for antimicrobial activity on a series of bacterial species, antiviral activity against Human Herpes Virus type 1 (HHV-1) in vitro using a Vero cell line, and the growth and development of plant pathogens Phoma narcissi and Botrytis tulipae. The results of the biological investigations indicate that among the peptides investigated, compounds VII and IX inhibit the growth of plant pathogens P. narcissi and B. tulipae, whereas compounds I and II stimulate the mycelium growth of the aforementioned pathogens. Other peptides show slow antimicrobial activity but do not inhibit the replication of HHV-1 in Vero cells

    Mass spectrometry in analysis of peptides and proteins : ionization markers

    No full text
    High sensitivity, accuracy, and ability to provide structural information makes mass spectrometry (MS) the method of choice for both qualitative and quantitative analysis in proteome research. Peptide sequencing by tandem mass spectrometry (MS/MS) was successfully applied to discover new peptide sequences and modifications. Insufficient ionization of some peptides is one of the main limitations of MS- based peptide identification. The development of sensitive detection techniques for the efficient analysis of such samples is very important. Differences in ionizability cause difficulties in quantification studies, which could be overcome by derivatization of peptides to improve both the detectability and the selectivity of an analysis. Incorporation of ionization markers and isotopic labels (particularly the isobaric tags) is often used for this reason. Isobaric labeling reagents (including commercially available iTRAQ, TMT, DiLeu and DiART) have found a wide application in quantitative proteomics. Mass spectrometry is a very good tool for the determination of posttranslational modifications (PTMs), but the modified proteins are usually present in low concentrations. The development of ionization tags specific to a particular PTM and suitable for sensitive analysis of the modified proteins is required. For the analysis of phosphorylated peptides, a combination of β-elimination and the reaction of resulting α,β-dehydroamino acid residues with the nucleophilic thiol group could be used to detect a labile PTM. Such reaction may be used to introduce derivatizing reagents at the original site of phosphorylation, to enhance ionization in MS analysis. Glycation and glycosylation of proteins are other very important PTMs associated with many natural processes as well as diseases. We have designed and synthesized bifunctional quaternary ammonium salt derivatives of phenylboronic acids for selective detection of carbohydrates and peptide-derived Amadori products by ESI-MS. The attachment of a fixed charge (e.g. in a form of a quaternary ammonium salt) to the amino groups in peptides leads to the enhancement of a precursor ion signal in mass spectra. We have developed several new QAS-containing ionization reagents including bicyclic tags with DABCO, ABCO or azoniaspiro groups. It is worth noting that 2,4,6-substituted pyrylium salts react with amino groups in peptides introducing a stable positive charge and improve peptide detection by MS. The newly developed ionization tags were successfully applied for the analysis of OBOC combinatorial libraries as well as for studying possible biomarkers of preeclampsia, a pregnancy disorder
    corecore