488 research outputs found

    Spin contribution to the ponderomotive force in a plasma

    Full text link
    The concept of a ponderomotive force due to the intrinsic spin of electrons is developed. An expression containing both the classical as well as the spin-induced ponderomotive force is derived. The results are used to demonstrate that an electromagnetic pulse can induce a spin-polarized plasma. Furthermore, it is shown that for certain parameters, the nonlinear back-reaction on the electromagnetic pulse from the spin magnetization current can be larger than that from the classical free current. Suitable parameter values for a direct test of this effect are presented.Comment: 4 pages, 2 figures, version accepted for publication in Physical Review Letter

    Plasma density measurements using chirped pulse broad-band Raman amplification

    Get PDF
    Stimulated Raman backscattering is used as a non-destructive method to determine the density of plasma media at localized positions in space and time. By colliding two counter-propagating, ultra-short laser pulses with a spectral bandwidth larger than twice the plasma frequency, amplification occurs at the Stokes wavelengths, which results in regions of gain and loss separated by twice the plasma frequency, from which the plasma density can be deduced. By varying the relative delay between the laser pulses, and therefore the position and timing of the interaction, the spatio-temporal distribution of the plasma density can be mapped out

    Absorption of Ultrashort Laser Pulses in Strongly Overdense Targets

    Full text link
    We report on the first absorption experiments of sub-10 fs high-contrast Ti:Sa laser pulses incident on solid targets. The very good contrast of the laser pulse assures the formation of a very small pre-plasma and the pulse interacts with the matter close to solid density. Experimental results indicate that p-polarized laser pulses are absorbed up to 80 percent at 80 degrees incidence angle. The simulation results of PSC PIC code clearly confirm the observations and show that the collisionless absorption works efficiently in steep density profiles

    Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter

    Get PDF
    1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006

    Energy exchange during stimulated Raman scattering of a relativistic laser in a plasma

    Get PDF
    Energy exchange between pump and daughter waves during the stimulated Raman scattering process in a plasma is investigated, including the effect of a damping coefficient of electron-ion collision at different initial three-wave phases. To obey the energy and momentum conservations, the resonance conditions are satisfied at an optimal initial phase difference between the interacting waves. The amplitudes of the interacting waves exhibit behaviors such as a parametric oscillator. The variations in initial three-wave phase difference generate a phase mismatch, which enhances the rate of the amplitude variations of the interacting waves. The relativistic mass effect modifies the dispersion relations of the interacting waves, and consequently the energy exchange during the stimulated Raman scattering is affected. The collisional damping in the plasma is shown to have an important effect on the evolution of the interacting waves.open91

    Mapping giant magnetic fields around dense solid plasmas by high resolution magneto-optical microscopy

    Get PDF
    We investigate distribution of magnetic fields around dense solid plasmas generated by intense p-polarized laser (~10^{16} W.cm^{-2}, 100 fs) irradiation of magnetic tapes, using high sensitivity magneto optical microscopy. We present evidence for giant axial magnetic fields and map out for the first time the spatial distribution of these fields. By using the axial magnetic field distribution as a diagnostic tool we uncover evidence for angular momentum associated with the plasma. We believe this study holds significance for investigating the process under which a magnetic material magnetizes or demagnetizes under the influence of ultrashort intense laser pulses.Comment: 17 pages of text with 4 figure

    Chirped pulse Raman amplification in plasma

    Get PDF
    Raman amplification in plasma has been proposed to be a promising method of amplifying short radiation pulses. Here, we investigate chirped pulse Raman amplification (CPRA) where the pump pulse is chirped and leads to spatiotemporal distributed gain, which exhibits superradiant scaling in the linear regime, usually associated with the nonlinear pump depletion and Compton amplification regimes. CPRA has the potential to serve as a high-efficiency high-fidelity amplifier/compressor stage

    Interaction of intense vuv radiation with large xenon clusters

    Full text link
    The interaction of atomic clusters with short, intense pulses of laser light to form extremely hot, dense plasmas has attracted extensive experimental and theoretical interest. The high density of atoms within the cluster greatly enhances the atom--laser interaction, while the finite size of the cluster prevents energy from escaping the interaction region. Recent technological advances have allowed experiments to probe the laser--cluster interaction at very high photon energies, with interactions much stronger than suggested by theories for lower photon energies. We present a model of the laser--cluster interaction which uses non-perturbative R-matrix techniques to calculate inverse bremsstrahlung and photoionization cross sections for Herman-Skillman atomic potentials. We describe the evolution of the cluster under the influence of the processes of inverse bremsstrahlung heating, photoionization, collisional ionization and recombination, and expansion of the cluster. We compare charge state distribution, charge state ejection energies, and total energy absorbed with the Hamburg experiment of Wabnitz {\em et al.} [Nature {\bf 420}, 482 (2002)] and ejected electron spectra with Laarmann {\em et al.} [Phys. Rev. Lett. {\bf 95}, 063402 (2005)]

    Amorphous silicon thin films: The ultimate lightweight space solar cell

    Get PDF
    Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared

    Electron kinetic effects on raman backscatter in plasmas

    Get PDF
    We augment the usual three-wave cold-fluid equations governing Raman backscatter (RBS) with a new kinetic thermal correction, proportional to an average of particle kinetic energy weighted by the ponderomotive phase. From closed-form analysis within a homogeneous kinetic three-wave model and ponderomotively averaged kinetic simulations in a more realistic pulsed case, the magnitude of these new contributions is shown to be a measure of the dynamical detuning between the pump laser, seed laser, and Langmuir wave. Saturation of RBS is analyzed, and the role of trapped particles illuminated. Simple estimates show that a small fraction of trapped particles (similar to 6%) can significantly suppress backscatter. We discuss the best operating regime of the Raman plasma amplifier to reduce these deleterious kinetic effects.open282
    • ā€¦
    corecore