166 research outputs found

    Prediction models for diagnosis and prognosis of covid-19: : systematic review and critical appraisal

    Get PDF
    Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity. Funding: LW, BVC, LH, and MDV acknowledge specific funding for this work from Internal Funds KU Leuven, KOOR, and the COVID-19 Fund. LW is a postdoctoral fellow of Research Foundation-Flanders (FWO) and receives support from ZonMw (grant 10430012010001). BVC received support from FWO (grant G0B4716N) and Internal Funds KU Leuven (grant C24/15/037). TPAD acknowledges financial support from the Netherlands Organisation for Health Research and Development (grant 91617050). VMTdJ was supported by the European Union Horizon 2020 Research and Innovation Programme under ReCoDID grant agreement 825746. KGMM and JAAD acknowledge financial support from Cochrane Collaboration (SMF 2018). KIES is funded by the National Institute for Health Research (NIHR) School for Primary Care Research. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. GSC was supported by the NIHR Biomedical Research Centre, Oxford, and Cancer Research UK (programme grant C49297/A27294). JM was supported by the Cancer Research UK (programme grant C49297/A27294). PD was supported by the NIHR Biomedical Research Centre, Oxford. MOH is supported by the National Heart, Lung, and Blood Institute of the United States National Institutes of Health (grant R00 HL141678). ICCvDH and BCTvB received funding from Euregio Meuse-Rhine (grant Covid Data Platform (coDaP) interref EMR187). The funders played no role in study design, data collection, data analysis, data interpretation, or reporting.Peer reviewedPublisher PD

    GRADE Summary of Findings Tabellen und Evidenzprofile: Detaillierte Anleitung fĂŒr Time-to-event Variablen

    No full text

    GRADE Guidelines: 29. Rating the certainty in time-to-event outcomes—Study limitations due to censoring of participants with missing data in intervention studies

    No full text
    Objectives To provide Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) guidance for the consideration of study limitations (risk of bias) due to missing participant outcome data for time-to-event outcomes in intervention studies. Study Design and Setting We developed this guidance through an iterative process that included membership consultation, feedback, presentation, and iterative discussion at meetings of the GRADE working group. Results The GRADE working group has published guidance on how to account for missing participant outcome data in binary and continuous outcomes. When analyzing time-to-event outcomes (e.g., overall survival and time-to-treatment failure) data of participants for whom the outcome of interest (e.g., death and relapse) has not been observed are dealt with through censoring. To do so, standard methods require that censored individuals are representative for those remaining in the study. Two types of censoring can be distinguished, end of study censoring and censoring because of missing data, commonly named loss to follow-up censoring. However, both types are not distinguishable with the usual information on censoring available to review authors. Dealing with individuals for whom data are missing during follow-up in the same way as individuals for whom full follow-up is available at the end of the study increases the risk of bias. Considerable differences in the treatment arms in the distribution of censoring over time (early versus late censoring), the overall degree of missing follow-up data, and the reasons why individuals were lost to follow-up may reduce the certainty in the study results. With often only very limited data available, review and guideline authors are required to make transparent and well-considered judgments when judging risk of bias of individual studies and then come to an overall grading decision for the entire body of evidence. Conclusion Concern for risk of bias resulting from censoring of participants for whom follow-up data are missing in the underlying studies of a body of evidence can be expressed in the study limitations (risk of bias) domain of the GRADE approach
    • 

    corecore