1,086 research outputs found

    Nucleosynthesis in 2D Core-Collapse Supernovae of 11.2 and 17.0 M⊙_{\odot} Progenitors: Implications for Mo and Ru Production

    Full text link
    Core-collapse supernovae are the first polluters of heavy elements in the galactic history. As such, it is important to study the nuclear compositions of their ejecta, and understand their dependence on the progenitor structure (e.g., mass, compactness, metallicity). Here, we present a detailed nucleosynthesis study based on two long-term, two-dimensional core-collapse supernova simulations of a 11.2 M⊙_{\odot} and a 17.0 M⊙_{\odot} star. We find that in both models nuclei well beyond the iron group (up to Z≈44Z \approx 44) can be produced, and discuss in detail also the nucleosynthesis of the p-nuclei 92,94^{92,94}Mo and 96,98^{96,98}Ru. While we observe the production of 92^{92}Mo and 94^{94}Mo in slightly neutron-rich conditions in both simulations, 96,98^{96,98}Ru can only be produced efficiently via the Îœ\nup-process. Furthermore, the production of Ru in the Îœ\nup-process heavily depends on the presence of very proton-rich material in the ejecta. This disentanglement of production mechanisms has interesting consequences when comparing to the abundance ratios between these isotopes in the solar system and in presolar grains.Comment: 48 pages, 19 figures, accepted for publication in: J. Phys. G: Nucl. Part. Phy

    Gravitational waves from supernova matter

    Full text link
    We have performed a set of 11 three-dimensional magnetohydrodynamical core collapse supernova simulations in order to investigate the dependencies of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15 solar mass progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ~2 % at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative GW prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.Comment: 10 pages, 6 figures, accepted, to be published in a Classical and Quantum Gravity special issue for MICRA200

    Neutrino oscillations in magnetically driven supernova explosions

    Full text link
    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large theta_(13), we show that survival probabilities of electron type neutrinos and antineutrinos seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of electron type antineutrinos observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which leads to a noticeable decrease in the electron type neutrino signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the electron type antineutrinos and neutrinos signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.Comment: 25 pages, 21 figures, JCAP in pres

    Biermann Mechanism in Primordial Supernova Remnant and Seed Magnetic Fields

    Full text link
    We study generation of magnetic fields by the Biermann mechanism in the pair-instability supernovae explosions of first stars. The Biermann mechanism produces magnetic fields in the shocked region between the bubble and interstellar medium (ISM), even if magnetic fields are absent initially. We perform a series of two-dimensional magnetohydrodynamic simulations with the Biermann term and estimate the amplitude and total energy of the produced magnetic fields. We find that magnetic fields with amplitude 10−14−10−1710^{-14}-10^{-17} G are generated inside the bubble, though the amount of magnetic fields generated depend on specific values of initial conditions. This corresponds to magnetic fields of 1028−103110^{28}-10^{31} erg per each supernova remnant, which is strong enough to be the seed magnetic field for galactic and/or interstellar dynamo.Comment: 12 pages, 3 figure

    Gravitational Waves from Core Collapse Supernovae

    Full text link
    We present the gravitational wave signatures for a suite of axisymmetric core collapse supernova models with progenitors masses between 12 and 25 solar masses. These models are distinguished by the fact they explode and contain essential physics (in particular, multi-frequency neutrino transport and general relativity) needed for a more realistic description. Thus, we are able to compute complete waveforms (i.e., through explosion) based on non-parameterized, first-principles models. This is essential if the waveform amplitudes and time scales are to be computed more precisely. Fourier decomposition shows that the gravitational wave signals we predict should be observable by AdvLIGO across the range of progenitors considered here. The fundamental limitation of these models is in their imposition of axisymmetry. Further progress will require counterpart three-dimensional models.Comment: 10 pages, 5 figure

    Axisymmetric simulations of magneto--rotational core collapse: dynamics and gravitational wave signal

    Full text link
    We have performed a comprehensive parameter study of the collapse of rotating, strongly magnetized stellar cores in axisymmetry to determine their gravitational wave signature based on the Einstein quadrupole formula. We use a Newtonian explicit magnetohydrodynamic Eulerian code based on the relaxing-TVD method for the solution of the ideal MHD equations, and apply the constraint-transport method to guarantee a divergence--free evolution of the magnetic field. We neglect effects due to neutrino transport and employ a simplified equation of state. The pre--collapse initial models are polytropes in rotational equilibrium with a prescribed degree of differential rotation and rotational energy (~ 1 % of the gravitational energy). The initial magnetic fields are purely poloidal the field strength ranging from 10^10 G to 10^13 G. The evolution of the core, whose collapse is initiated by reducing the gas pressure by a prescribed amount, is followed until a few ten milliseconds past core bounce. The initial magnetic fields are amplified mainly by the differential rotation of the core giving rise to a strong toroidal field component. The poloidal field component grows by compression during collapse, but does not change significantly after core bounce if (abbreviated)Comment: 34 pages, 25 figures, accepted for publication in A&A. Minor changes in the main text, additional appendix on numerical convergence. Figure quality reduced to match arXiv file size requirement

    Brucella abortus invasion of osteocytes modulates connexin 43 and integrin expression and induces osteoclastogenesis via receptor activator of NF-ÎșB ligand and tumor necrosis factor alpha secretion

    Get PDF
    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-ÎșB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-ÎČ, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage.Fil: Pesce Viglietti, AyelĂ©n Ivana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de ClĂ­nicas General San MartĂ­n; ArgentinaFil: Arriola Benitez, Paula Constanza. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de ClĂ­nicas General San MartĂ­n; ArgentinaFil: Gentilini, Maria Virginia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de ClĂ­nicas General San MartĂ­n; ArgentinaFil: Velasquez, Lis Noelia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Fossati, Carlos Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Estudios InmunolĂłgicos y FisiopatolĂłgicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios InmunolĂłgicos y FisiopatolĂłgicos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias BiolĂłgicas; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de ClĂ­nicas General San MartĂ­n; ArgentinaFil: Delpino, MarĂ­a Victoria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de ClĂ­nicas General San MartĂ­n; Argentin
    • 

    corecore