1,259 research outputs found

    Dynamically dominant magnetic fields in the diffuse interstellar medium

    Full text link
    Observations show that magnetic fields in the interstellar medium (ISM) often do not respond to increases in gas density as would be naively expected for a frozen-in field. This may suggest that the magnetic field in the diffuse gas becomes detached from dense clouds as they form. We have investigated this possibility using theoretical estimates, a simple magneto-hydrodynamic model of a flow without mass conservation and numerical simulations of a thermally unstable flow. Our results show that significant magnetic flux can be shed from dense clouds as they form in the diffuse ISM, leaving behind a magnetically dominated diffuse gas.Comment: 2 pages, 1 figure. In proceedings of IAU Symposium 259: "Cosmic magnetic fields: from planets to stars and galaxies", eds. K.G. Strassmeier, A.G. Kosovichev & J.E. Beckman in pres

    DeepTx: Deep Learning Beamforming with Channel Prediction

    Full text link
    Machine learning algorithms have recently been considered for many tasks in the field of wireless communications. Previously, we have proposed the use of a deep fully convolutional neural network (CNN) for receiver processing and shown it to provide considerable performance gains. In this study, we focus on machine learning algorithms for the transmitter. In particular, we consider beamforming and propose a CNN which, for a given uplink channel estimate as input, outputs downlink channel information to be used for beamforming. The CNN is trained in a supervised manner considering both uplink and downlink transmissions with a loss function that is based on UE receiver performance. The main task of the neural network is to predict the channel evolution between uplink and downlink slots, but it can also learn to handle inefficiencies and errors in the whole chain, including the actual beamforming phase. The provided numerical experiments demonstrate the improved beamforming performance.Comment: 27 pages, this work has been submitted to the IEEE for possible publication; v2: Fixed typo in author name, v3: a revisio

    Mixing Time Scales in a Supernova-Driven Interstellar Medium

    Get PDF
    We study the mixing of chemical species in the interstellar medium (ISM). Recent observations suggest that the distribution of species such as deuterium in the ISM may be far from homogeneous. This raises the question of how long it takes for inhomogeneities to be erased in the ISM, and how this depends on the length scale of the inhomogeneities. We added a tracer field to the three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing and dispersal in kiloparsec-scale simulations of the ISM with different supernova (SN) rates and different inhomogeneity length scales. We find several surprising results. Classical mixing length theory fails to predict the very weak dependence of mixing time on length scale that we find on scales of 25--500 pc. Derived diffusion coefficients increase exponentially with time, rather than remaining constant. The variance of composition declines exponentially, with a time constant of tens of Myr, so that large differences fade faster than small ones. The time constant depends on the inverse square root of the supernova rate. One major reason for these results is that even with numerical diffusion exceeding physical values, gas does not mix quickly between hot and cold regions.Comment: 23 pages, 14 figures that include 7 simulation images and 19 plots, accepted for publication at Ap

    Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo

    Full text link
    The possibility of the magnetic flux expulsion from the Galaxy in the superbubble (SB) explosions, important for the Alpha-Omega dynamo, is considered. Special emphasis is put on the investigation of the downsliding of the matter from the top of the shell formed by the SB explosion which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh-Taylor instabilities in the shell limit the SB expansion, thus, making impossible magnetic flux expulsion. The effect of the cosmic rays in the shell on the sliding is considered and it is shown that it is negligible compared to Galactic gravity. Thus, the question of possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.Comment: MNRAS, in press, 11 pages, 9 figure

    Kinematic frames and "active longitudes": does the Sun have a face?

    Get PDF
    It has recently been claimed that analysis of Greenwich sunspot data over 120 years reveals that sunspot activity clusters around two longitudes separated by 180 degrees (``active longitudes'') with clearly defined differential rotation during activity cycles.In the present work we extend this critical examination of methodology to the actual Greenwich sunspot data and also consider newly proposed methods of analysis claiming to confirm the original identification of active longitudes. Our analysis revealed that values obtained for the parameters of differential rotation are not stable across different methods of analysis proposed to track persistent active longitudes. Also, despite a very thorough search in parameter space, we were unable to reproduce results claiming to reveal the century-persistent active longitudes. We can therefore say that strong and well substantiated evidence for an essential and century-scale persistent nonaxisymmetry in the sunspot distribution does not exist.Comment: 14 pages, 1 table, 21 figures, accepted in A&
    • 

    corecore