1,259 research outputs found
Dynamically dominant magnetic fields in the diffuse interstellar medium
Observations show that magnetic fields in the interstellar medium (ISM) often
do not respond to increases in gas density as would be naively expected for a
frozen-in field. This may suggest that the magnetic field in the diffuse gas
becomes detached from dense clouds as they form. We have investigated this
possibility using theoretical estimates, a simple magneto-hydrodynamic model of
a flow without mass conservation and numerical simulations of a thermally
unstable flow. Our results show that significant magnetic flux can be shed from
dense clouds as they form in the diffuse ISM, leaving behind a magnetically
dominated diffuse gas.Comment: 2 pages, 1 figure. In proceedings of IAU Symposium 259: "Cosmic
magnetic fields: from planets to stars and galaxies", eds. K.G. Strassmeier,
A.G. Kosovichev & J.E. Beckman in pres
DeepTx: Deep Learning Beamforming with Channel Prediction
Machine learning algorithms have recently been considered for many tasks in
the field of wireless communications. Previously, we have proposed the use of a
deep fully convolutional neural network (CNN) for receiver processing and shown
it to provide considerable performance gains. In this study, we focus on
machine learning algorithms for the transmitter. In particular, we consider
beamforming and propose a CNN which, for a given uplink channel estimate as
input, outputs downlink channel information to be used for beamforming. The CNN
is trained in a supervised manner considering both uplink and downlink
transmissions with a loss function that is based on UE receiver performance.
The main task of the neural network is to predict the channel evolution between
uplink and downlink slots, but it can also learn to handle inefficiencies and
errors in the whole chain, including the actual beamforming phase. The provided
numerical experiments demonstrate the improved beamforming performance.Comment: 27 pages, this work has been submitted to the IEEE for possible
publication; v2: Fixed typo in author name, v3: a revisio
Mixing Time Scales in a Supernova-Driven Interstellar Medium
We study the mixing of chemical species in the interstellar medium (ISM).
Recent observations suggest that the distribution of species such as deuterium
in the ISM may be far from homogeneous. This raises the question of how long it
takes for inhomogeneities to be erased in the ISM, and how this depends on the
length scale of the inhomogeneities. We added a tracer field to the
three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing
and dispersal in kiloparsec-scale simulations of the ISM with different
supernova (SN) rates and different inhomogeneity length scales. We find several
surprising results. Classical mixing length theory fails to predict the very
weak dependence of mixing time on length scale that we find on scales of
25--500 pc. Derived diffusion coefficients increase exponentially with time,
rather than remaining constant. The variance of composition declines
exponentially, with a time constant of tens of Myr, so that large differences
fade faster than small ones. The time constant depends on the inverse square
root of the supernova rate. One major reason for these results is that even
with numerical diffusion exceeding physical values, gas does not mix quickly
between hot and cold regions.Comment: 23 pages, 14 figures that include 7 simulation images and 19 plots,
accepted for publication at Ap
Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo
The possibility of the magnetic flux expulsion from the Galaxy in the
superbubble (SB) explosions, important for the Alpha-Omega dynamo, is
considered. Special emphasis is put on the investigation of the downsliding of
the matter from the top of the shell formed by the SB explosion which is able
to influence the kinematics of the shell. It is shown that either Galactic
gravity or the development of the Rayleigh-Taylor instabilities in the shell
limit the SB expansion, thus, making impossible magnetic flux expulsion. The
effect of the cosmic rays in the shell on the sliding is considered and it is
shown that it is negligible compared to Galactic gravity. Thus, the question of
possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.Comment: MNRAS, in press, 11 pages, 9 figure
Kinematic frames and "active longitudes": does the Sun have a face?
It has recently been claimed that analysis of Greenwich sunspot data over 120
years reveals that sunspot activity clusters around two longitudes separated by
180 degrees (``active longitudes'') with clearly defined differential rotation
during activity cycles.In the present work we extend this critical examination
of methodology to the actual Greenwich sunspot data and also consider newly
proposed methods of analysis claiming to confirm the original identification of
active longitudes. Our analysis revealed that values obtained for the
parameters of differential rotation are not stable across different methods of
analysis proposed to track persistent active longitudes. Also, despite a very
thorough search in parameter space, we were unable to reproduce results
claiming to reveal the century-persistent active longitudes. We can therefore
say that strong and well substantiated evidence for an essential and
century-scale persistent nonaxisymmetry in the sunspot distribution does not
exist.Comment: 14 pages, 1 table, 21 figures, accepted in A&
- âŠ