8 research outputs found

    Cortical localization of reading in normal children: An fMRI language study

    No full text
    Background: fMRI provides a noninvasive means of identifying the location and organization of neural networks that underlie cognitive functions. Objective: To identify, using fMRI, brain regions involved in processing written text in children. Methods: The authors studied nine normal right-handed native English-speaking children, aged 10.2 years (range 7.9 to 13.3 years), with two paradigms: reading Aesop's Fables and "Read Response Naming" (reading a description of an object that was then silently named). Data were acquired using blood oxygen level-dependent fMRI. Group data were analyzed with statistical parametric mapping; individual data sets were analyzed with a region-of-interest approach from individual study t maps. The number of activated pixels was determined in brain regions and an asymmetry index (AI = [L - R]/[L + R]) calculated for each region. Results: The authors found strong activation in the left middle temporal gyrus and left midfrontal gyrus and variable activation in left inferior frontal gyrus for both reading tasks in the group analysis (z > 5.5 to 9.1). All subjects had strong left-sided lateralization for both tasks in middle/superior temporal gyrus, inferior frontal gyrus, and middle frontal gyrus (AI = 0.76 to 1.0 for t = 4). Reading Fables activated twice as many pixels in temporal cortex as the Read Response Naming task; activation in dorsolateral prefrontal cortex was similar for both tasks. Small homologous right middle temporal region activation was seen with reading a fable. Conclusions: The neural networks that process reading appear to be lateralized and localized by middle to late childhood. Reading text paradigms may prove useful for identifying frontal and temporal language-processing areas and for determining language dominance in children experiencing epilepsy or undergoing tumor surgery

    Mosquito Control Priorities in Florida—Survey Results from Florida Mosquito Control Districts

    No full text
    Florida lies within a subtropical region where the climate allows diverse mosquito species including invasive species to thrive year-round. As of 2021, there are currently 66 state-approved Florida Mosquito Control Districts, which are major stakeholders for Florida public universities engaged in mosquito research. Florida is one of the few states with extensive organized mosquito control programs. The Florida State Government and Florida Mosquito Control Districts have long histories of collaboration with research institutions. During fall 2020, we carried out a survey to collect baseline data on the current control priorities from Florida Mosquito Control Districts relating to (1) priority control species, (2) common adult and larval control methods, and (3) major research questions to address that will improve their control and surveillance programs. The survey data showed that a total of 17 distinct mosquito species were considered to be priority control targets, with many of these species being understudied. The most common control approaches included truck-mounted ultra-low-volume adulticiding and biopesticide-based larviciding. The districts held interest in diverse research questions, with many prioritizing studies on basic science questions to help develop evidence-based control strategies. Our data highlight the fact that mosquito control approaches and priorities differ greatly between districts and provide an important point of comparison for other regions investing in mosquito control, particularly those with similar ecological settings, and great diversity of potential mosquito vectors, such as in Florida. Our findings highlight a need for greater alignment of research priorities between mosquito control and mosquito research. In particular, we note a need to prioritize filling knowledge gaps relating to understudied mosquito species that have been implicated in arbovirus transmission

    Gasotransmitters in cancer: from pathophysiology to experimental therapy

    No full text
    corecore