7,306 research outputs found
A new screening function for Coulomb renormalization
We introduce a new screening function which is useful for the few-body
Coulomb scattering problem in ``screening and renormalization'' scheme. The new
renormalization phase factor of the screening function is analytically shown.
The Yukawa type of the screening potential has been used in several decades, we
modify it to make more useful. As a concrete example, we compare the
proton-proton scattering phase shifts calculated from these potentials. The
numerical results document that high precision calculations of the
renormalization are performed by the new screening function.Comment: 4 pages, 8 figure
Ambiguities of theoretical parameters and CP/T violation in neutrino factories
We study the optimal setup for observation of the CP asymmetry in neutrino
factory experiments --- the baseline length, the muon energy and the analysis
method. First, we point out that the statistical quantity which has been used
in previous works doesn't represent the CP asymmetry. Then we propose the more
suitable quantity, , which is sensitive to the CP
asymmetry. We investigate the behavior of with ambiguities of
the theoretical parameters. The fake CP asymmetry due to the matter effect
increases with the baseline length and hence the error in the estimation of the
fake CP asymmetry grows with the baseline length due to the ambiguities of the
theoretical parameters. Namely, we lose the sensitivity to the genuine
CP-violation effect in longer baseline.Comment: 8pages, 2figures, Talk given by J. Sato at Joint U.S. / Japan
Workshop on New Initiatives in Muon Lepton Flavor Violation and Neutrino
Oscillation with High Intense Muon and Neutrino Sources, Honolulu, Hawaii,
2-6 Oct 200
The rp-Process in Neutrino-driven Winds
Recent hydrodynamic simulations of core-collapse supernovae with accurate
neutrino transport suggest that the bulk of the early neutrino-heated ejecta is
proton rich, in which the production of some interesting proton-rich nuclei is
expected. As suggested in recent nucleosynthesis studies, the rapid
proton-capture (rp) process takes place in such proton-rich environments by
bypassing the waiting point nuclei with the beta-lives of a few minutes via the
faster capture of neutrons continuously supplied from the neutrino absorption
by protons. In this study, the nucleosynthesis calculations are performed with
the wide ranges of the neutrino luminosities and the electron fractions (Ye),
using the semi-analytic models of proto-neutron star winds. The masses of
proto-neutron stars are taken to be 1.4 Msolar and 2.0 Msolar, where the latter
is regarded as the test for somewhat high entropy winds (about a factor of
two). For Ye > 0.52, the neutrino-induced rp-process takes place in many wind
trajectories, and the p-nuclei up to A ~ 130 are synthesized with interesting
amounts. However, 92Mo is somewhat underproduced compared to those with similar
mass numbers. For 0.46 < Ye < 0.49, on the other hand, 92Mo is significantly
enhanced by the nuclear flows in the vicinity of the abundant 90Zr that
originates from the alpha-process at higher temperature. The nucleosynthetic
yields are averaged over the ejected masses of winds, and further the Ye
distribution predicted by the recent hydrodynamic simulation of a core-collapse
supernova. Comparison of the mass-Ye-averaged yields to the solar compositions
implies that the neutrino-driven winds can be potentially the origin of light
p-nuclei up to A ~ 110, including 92,94Mo and 96,98Ru that cannot be explained
by other astrophysical sites.Comment: 29 pages, 18 figures, accepted for publication in Ap
N=2 Supermultiplet of Currents and Anomalous Transformations in Supersymmetric Gauge Theory
We examine some properties of supermultiplet consisting of the U(1)_{J}
current, extended supercurrents, energy-momentum tensor and the central charge
in N=2 supersymmetric Yang-Mills theory. The superconformal improvement
requires adding another supermultiplet beginning with the U(1)_{R} current. We
determine the anomalous (quantum mechanical) supersymmetry transformation
associated with the central charge and the energy-momentum tensor to one-loop
order.Comment: 8 pages, LaTe
Time-Optimal Transfer of Coherence
We provide exact analytical solutions for the problem of time-optimal
transfer of coherence from one spin polarization to a three-fold coherence in a
trilinear Ising chain with a fixed energy available and subject to local
controls with a non negligible time cost. The time of transfer is optimal and
consistent with a previous numerical result obtained assuming instantaneous
local controls.Comment: Published version (with typos in eqs. (25)-(27) corrected
- …