1,931 research outputs found
Recommended from our members
Establishing and Sustaining a Community of Practice
Communities of practice have taken a firm foothold in the second language teaching profession due to their promise of enabling participants to self determine their professional development needs and, through peer mentoring, achieve their goals. This article provides a rationale as to why the model is particularly well suited to teacher professional development along with guidelines for establishing and sustaining the community. This process is illustrated via several examples: (1) a large-scale, multinational community of practice established in the Lower Mekong region of Southeast Asia and funded by the U.S. Department of State's Office of English Language Programs and
(2) two teacher-created local outgrowths of this community established in Siem Reap and Phnom Penh, Cambodia
Diffractive Interaction and Scaling Violation in pp->pi^0 Interaction and GeV Excess in Galactic Diffuse Gamma-Ray Spectrum of EGRET
We present here a new calculation of the gamma-ray spectrum from pp->pi^0 in
the Galactic ridge environment. The calculation includes the diffractive pp
interaction and incorporates the Feynman scaling violation for the first time.
Galactic diffuse gamma-rays come, predominantly, from pi^0->gamma gamma in the
sub-GeV to multi-GeV range. Hunter et al. found, however, an excess in the GeV
range ("GeV Excess") in the EGRET Galactic diffuse spectrum above the
prediction based on experimental pp->pi^0 cross-sections and the Feynman
scaling hypothesis. We show, in this work, that the diffractive process makes
the gamma-ray spectrum harder than the incident proton spectrum by ~0.05 in
power-law index, and, that the scaling violation produces 30-80% more pi^0 than
the scaling model for incident proton energies above 100GeV. Combination of the
two can explain about a half of the "GeV Excess" with the local cosmic proton
(power-law index ~2.7). The excess can be fully explained if the proton
spectral index in the Galactic ridge is a little harder (~0.2 in power-law
index) than the local spectrum. Given also in the paper is that the diffractive
process enhances e^+ over e^- and the scaling violation gives 50-100% higher
p-bar yield than without the violation, both in the multi-GeV range.Comment: 35 pages, 11 figures, to appear in Astrophysical Journa
Investigations of telomere maintenance in DNA damage response defective cells and telomerase in brain tumours
Telomeres are nucleoprotein complexes located at the end of chromosomes. They have an essential role in protecting chromosome ends. Telomerase or ALT (alternative lengthening of telomeres) mechanisms maintain telomeres by compensating natural telomeric loss. We have set up a flow-FISH method and using mouse lymphoma cell lines we identified unexpectedly the presence of subpopulations of cells with different telomere lengths. Subpopulations of cells with different telomere lengths were also observed in a human ALT and non-ALT cell line. Differences in telomere length between subpopulations of cells were significant and we term this phenomenon TELEFLUCS (TElomere LEngth FLUctuations in Cell Subpopulations). By applying flow-FISH we could successfully measure telomere lengths during replicative senescence in human primary fibroblasts with different genetic defects that confer sensitivity to ionising radiation (IR). The results from this study, based on flow-FISH and Southern hybridisation measurements, revealed an accelerated rate of telomere shortening in radiosensitive fibroblasts. We also observed accelerated telomere shortening in murine BRCA1 deficient cells, another defect conferring radiosensitivity, in comparison with a BRCA1 proficient cell line. We transiently depleted BRCA1 by siRNAs in two human mammary epithelial cell lines but could not find changes in telomere length in comparison with control cells. Cytological evidence of telomere dysfunction was observed in all radiosensitive cell lines. These results suggest that mechanisms that confer sensitivity to IR may be linked with mechanisms that cause telomere dysfunction. Furthermore, we have been able to show that human ALT positive cell lines show dysfunctional telomeres as detected by either the presence of DSBs at their telomeres or cytogenetic analysis and usually cells with dysfunctional telomeres are sensitive to IR. Finally, we assessed hTERT mRNA splicing variants and telomerase activity in brain tumours, which exhibit considerable chromosome instability suggesting that DNA repair mechanisms may be impaired. We demonstrated that high levels of hTERT mRNAs and telomerase activity correlate with proliferation rate. The presence of hTERT splice variants did not strictly correlate with absence of telomerase activity but hTERT spliced transcripts were observed in some telomerase negative brain tumours suggesting that hTERT splicing may contribute to activation of ALT mechanisms.EThOS - Electronic Theses Online ServiceGrant to Dr. Predrag Slijepcevic from the Department of Health (RRX97)EC Euratom (Fig h-CT-2002-0021 7)my, Embryology, Histology and Medial Physics, Faculty of Medicine, University of Ghent, BelgiumGBUnited Kingdo
Comparison of measurement and simulation of ATLAS cavern radiation background
Sixteen Medipix2 pixel detector based (MPX) devices were operated at various positions within the ATLAS detector and cavern continuously from early 2008 up to 2013. In addition to photons, each MPX detector is capable to detect charged particles, and neutrons as it is covered with a mask of converter materials dividing its area into regions sensitive to thermal or fast neutrons. The MPX detector network was effectively used for real-time measurements of the spectral characteristics and composition of complex radiation fields in ATLAS. This article reports comparison of the results of measurements performed with MPX detectors during the LHC operation period in 2010 and 2011 with Monte Carlo simulations results from the FLUGG and GCALOR codes. For the purpose of this comparison, the MPX detectors were operated in tracking mode with low threshold (8-10 keV) allowing one to distinguish among particle categories based on the recognition of track patterns left by the particles in the MPX sensitive layer. The comparison of measurements with simulations shows that the agreement between measured and simulated data is satisfactory in most cases within a factor of two
Adiabatic compression and indirect detection of supersymmetric dark matter
Recent developments in the modelling of the dark matter distribution in our
Galaxy point out the necessity to consider some physical processes to satisfy
observational data. In particular, models with adiabatic compression, which
include the effect of the baryonic gas in the halo, increase significantly the
dark matter density in the central region of the Milky Way. On the other hand,
the non-universality in scalar and gaugino sectors of supergravity models can
also increase significantly the neutralino annihilation cross section. We show
that the combination of both effects gives rise to a gamma-ray flux arising
from the Galactic Center largely reachable by future experiments like GLAST. We
also analyse in this framework the EGRET excess data above 1 GeV, as well as
the recent data from CANGAROO and HESS. The analysis has been carried out
imposing the most recent experimental constraints, such as the lower bound on
the Higgs mass, the \bsg branching ratio, and the muon . In addition, the
recently improved upper bound on has also been taken
into account. The astrophysical (WMAP) bounds on the dark matter density have
also been imposed on the theoretical computation of the relic neutralino
density through thermal production.Comment: 32 pages, 11 figures, final version to appear in JCA
Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta
Parameterization of Gamma, e^+/- and Neutrino Spectra Produced by p-p Interaction in Astronomical Environment
We present the yield and spectra of stable secondary particles (gamma, e^+/-,
nu_e, nubar_e, nu_mu, and nubar_mu) of p-p interaction in parameterized
formulae to facilitate calculations involving them in astronomical
environments. The formulae are derived on the up-to-date p-p interaction model
by [Kamae05] which incorporates the logarithmically rising inelastic
cross-section, the diffraction dissociation process, and the Feynman scaling
violation. To improve fidelity to experimental data in lower energies, two
baryon resonance contributions have been added: one representing Delta(1232)
and the other multiple resonances around 1600MeV/c^2. The parametrized formulae
predict that all secondary particle spectra be harder by about 0.05 in
power-law indices than that of the incident proton and their inclusive
cross-sections be larger than those predicted by p-p interaction models based
on the Feynman scaling.Comment: Errors and typos in Eqns 1-4 and Table 1 corrected and editorial
changes incorporate
- …