8 research outputs found

    Genomic Organization and Expression Demonstrate Spatial and Temporal Hox Gene Colinearity in the Lophotrochozoan Capitella sp. I

    Get PDF
    Hox genes define regional identities along the anterior–posterior axis in many animals. In a number of species, Hox genes are clustered in the genome, and the relative order of genes corresponds with position of expression in the body. Previous Hox gene studies in lophotrochozoans have reported expression for only a subset of the Hox gene complement and/or lack detailed genomic organization information, limiting interpretations of spatial and temporal colinearity in this diverse animal clade. We studied expression and genomic organization of the single Hox gene complement in the segmented polychaete annelid Capitella sp. I. Total genome searches identified 11 Hox genes in Capitella, representing 11 distinct paralog groups thought to represent the ancestral lophotrochozoan complement. At least 8 of the 11 Capitella Hox genes are genomically linked in a single cluster, have the same transcriptional orientation, and lack interspersed non-Hox genes. Studying their expression by situ hybridization, we find that the 11 Capitella Hox genes generally exhibit spatial and temporal colinearity. With the exception of CapI-Post1, Capitella Hox genes are all expressed in broad ectodermal domains during larval development, consistent with providing positional information along the anterior–posterior axis. The anterior genes CapI-lab, CapI-pb, and CapI-Hox3 initiate expression prior to the appearance of segments, while more posterior genes appear at or soon after segments appear. Many of the Capitella Hox genes have either an anterior or posterior expression boundary coinciding with the thoracic–abdomen transition, a major body tagma boundary. Following metamorphosis, several expression patterns change, including appearance of distinct posterior boundaries and restriction to the central nervous system. Capitella Hox genes have maintained a clustered organization, are expressed in the canonical anterior–posterior order found in other metazoans, and exhibit spatial and temporal colinearity, reflecting Hox gene characteristics that likely existed in the protostome–deuterostome ancestor

    Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today

    Isolation of a Pax-6 homolog from the ribbonworm Lineus sanguineus.

    No full text
    The Pax-6 genes of vertebrates and Drosophila encode transcription factors with highly conserved paired- and homeodomains. They are expressed in the nervous system and the developing eyes. Loss-of-function mutations in mammals and flies lead to a reduction or absence of the eyes. By ectopic expression of Pax-6 in Drosophila ectopic eyes can be induced, indicating a determinative role in eye morphogenesis. We have isolated a Pax-6 homolog of the ribbonworm Lineus sanguineus. This gene shares extensive sequence identity and several conserved splice sites with the mammalian and Drosophila genes. During head regeneration the L. sanguineus Pax-6 homolog is expressed in the central nervous system, in the cerebral organ, and in the eye region. These findings support the hypothesis that Pax-6 was present in primitive metazoa before the evolutionary separation of vertebrates and arthropods and suggest a fundamental role in eye and central nervous system development

    Isolation of a Pax-6 homolog from the ribbonworm Lineus sanguineus.

    No full text

    Ancient origin of the Hox gene cluster.

    No full text
    The Hox gene cluster has a crucial function in body patterning during animal development. How and when this gene cluster originated is being clarified by recent data from Cnidaria, a basal animal phylum. The characterization of Hox-like genes from Hydra, sea anemones and jellyfish has revealed that a Hox gene cluster is extremely ancient, having originated even before the divergence of these basal animals.</p
    corecore