16 research outputs found

    A GTPase-induced switch in phospholipid affinity of collybistin contributes to synaptic gephyrin clustering

    Get PDF
    Synaptic transmission between neurons relies on the exact spatial organization of postsynaptic transmitter receptors, which are recruited and positioned by dedicated scaffolding and regulatory proteins. At GABAergic synapses, the regulatory protein collybistin (Cb, also known as ARHGEF9) interacts with small GTPases, cell adhesion proteins and phosphoinositides to recruit the scaffolding protein gephyrin and GABAA receptors to nascent synapses. We dissected the interaction of Cb with the small Rho-like GTPase TC10 (also known as RhoQ) and phospholipids. Our data define a protein– lipid interaction network that controls the clustering of gephyrin at synapses. Within this network, TC10 and monophosphorylated phosphoinositides, particulary phosphatidylinositol 3-phosphate (PI3P), provide a coincidence detection platform that allows the accumulation and activation of Cb in endomembranes. Upon activation, TC10 induces a phospholipid affinity switch in Cb, which allows Cb to specifically interact with phosphoinositide species present at the plasma membrane. We propose that this GTPase- based regulatory switch mechanism represents an important step in the process of tethering of Cb-dependent scaffolds and receptors at nascent postsynapses

    DPP9 is a novel component of the N-end rule pathway targeting the tyrosine kinase Syk.

    Get PDF
    The aminopeptidase DPP9 removes dipeptides from N-termini of substrates having a proline or alanine in second position. Although linked to several pathways including cell survival and metabolism, the molecular mechanisms underlying these outcomes are poorly understood. We identified a novel interaction of DPP9 with Filamin A, which recruits DPP9 to Syk, a central kinase in B-cell signalling. Syk signalling can be terminated by degradation, requiring the ubiquitin E3 ligase Cbl. We show that DPP9 cleaves Syk to produce a neo N-terminus with serine in position 1. Pulse-chases combined with mutagenesis studies reveal that Ser1 strongly influences Syk stability. Furthermore, DPP9 silencing reduces Cbl interaction with Syk, suggesting that DPP9 processing is a prerequisite for Syk ubiquitination. Consistently, DPP9 inhibition stabilizes Syk, thereby modulating Syk signalling. Taken together, we demonstrate DPP9 as a negative regulator of Syk and conclude that DPP9 is a novel integral aminopeptidase of the N-end rule pathway

    Mapping protein interactions in the active TOM-TIM23 supercomplex

    Get PDF
    Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport

    The SUMO1-E67 interacting loop peptide is an allosteric inhibitor of the dipeptidyl peptidases 8 and 9.

    No full text
    The intracellular peptidases dipeptidyl peptidase (DPP) 8 and DPP9 are involved in multiple cellular pathways including antigen maturation, cellular homeostasis, energy metabolism, and cell viability. Previously we showed that the small ubiquitin-like protein modifier SUMO1 interacts with an armlike structure in DPP9, leading to allosteric activation of the peptidase. Here we demonstrate that the E67-interacting loop (EIL) peptide, which corresponds to the interaction surface of SUMO1 with DPP9, acts as a noncompetitive inhibitor of DPP9. Moreover, by analyzing the sensitivity of DPP9 arm mutants to the EIL peptide, we mapped specific residues in the arm that are important for inhibition by the EIL, suggesting that the peptide acts as an allosteric inhibitor of DPP9. By modifying the EIL peptide, we constructed peptide variants with more than a 1,000-fold selectivity toward DPP8 (147 nm) and DPP9 (170 nm) over DPPIV (200 μm). Furthermore, application of these peptides to cells leads to a clear inhibition of cellular prolyl peptidase activity. Importantly, in line with previous publications, inhibition of DPP9 with these novel allosteric peptide inhibitors leads to an increase in EGF-mediated phosphorylation of Akt. This work highlights the potential use of peptides that mimic interaction surfaces for modulating enzyme activity

    Signal recognition initiates reorganization of the presequence translocase during protein import.

    No full text
    The mitochondrial presequence translocase interacts with presequence-containing precursors at the intermembrane space (IMS) side of the inner membrane to mediate their translocation into the matrix. Little is known as too how these matrix-targeting signals activate the translocase in order to initiate precursor transport. Therefore, we analysed how signal recognition by the presequence translocase initiates reorganization among Tim-proteins during import. Our analyses revealed that the presequence receptor Tim50 interacts with Tim21 in a signal-sensitive manner in a process that involves the IMS-domain of the Tim23 channel. The signal-driven release of Tim21 from Tim50 promotes recruitment of Pam17 and thus triggers formation of the motor-associated form of the TIM23 complex required for matrix transport

    The ALFA tag is a highly versatile tool for nanobody based bioscience applications

    No full text
    Specialized epitope tags are widely used for detecting, manipulating or purifying proteins, but often their versatility is limited. Here, we introduce the ALFA tag, a rationally designed epitope tag that serves a remarkably broad spectrum of applications in life sciences while outperforming established tags like the HA , FLAG or myc tag. The ALFA tag forms a small and stable amp; 945; helix that is functional irrespective of its position on the target protein in prokaryotic and eukaryotic hosts. We characterize a nanobody NbALFA binding ALFA tagged proteins from native or fixed specimen with low picomolar affinity. It is ideally suited for super resolution microscopy, immunoprecipitations and Western blotting, and also allows in vivo detection of proteins. We show the crystal structure of the complex that enabled us to design a nanobody mutant NbALFAPE that permits efficient one step purifications of native ALFA tagged proteins, complexes and even entire living cells using peptide elution under physiological condition

    14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban

    No full text
    The cardiac membrane protein phospholamban (PLN) is targeted by protein kinase A (PKA) at Ser16 and by Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr17. β-Adrenergic stimulation and PKA-dependent phosphorylation of Ser16 acutely stimulate the sarcoplasmic reticulum calcium pump (SERCA) by relieving its inhibition by PLN. CaMKII-dependent phosphorylation may lead to longer-lasting SERCA stimulation and may sustain maladaptive Ca2+ handling. Here, we demonstrated that phosphorylation at either Ser16 or Thr17 converted PLN into a target for the phosphoadaptor protein 14-3-3 with different affinities. 14-3-3 proteins were localized within nanometers of PLN and endogenous 14-3-3 coimmunoprecipitated with pentameric PLN from cardiac membranes. Molecular dynamics simulations predicted different molecular contacts for peptides phosphorylated at Ser16 or Thr17 with the binding groove of 14-3-3, resulting in varied binding affinities. 14-3-3 binding protected either PLN phosphosite from dephosphorylation. β-Adrenergic stimulation of isolated adult cardiomyocytes resulted in the membrane recruitment of endogenous 14-3-3. The exogenous addition of 14-3-3 to β-adrenergic–stimulated cardiomyocytes led to prolonged SERCA activation, presumably because 14-3-3 protected PLN pentamers from dephosphorylation. Phosphorylation of Ser16 was disrupted by the cardiomyopathy-associated ∆Arg14 mutation, implying that phosphorylation of Thr17 by CaMKII may become crucial for 14-3-3 recruitment to ∆Arg14 PLN. Consistent with PLN acting as a dynamic hub in the control of Ca2+ handling, our results identify 14-3-3 binding to PLN as a contractility-augmenting mechanism

    A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria :

    Get PDF
    The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (MC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor

    14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban

    No full text
    The cardiac membrane protein phospholamban (PLN) is targeted by protein kinase A (PKA) at Ser16 and by Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr17 β-Adrenergic stimulation and PKA-dependent phosphorylation of Ser16 acutely stimulate the sarcoplasmic reticulum calcium pump (SERCA) by relieving its inhibition by PLN. CaMKII-dependent phosphorylation may lead to longer-lasting SERCA stimulation and may sustain maladaptive Ca2+ handling. Here, we demonstrated that phosphorylation at either Ser16 or Thr17 converted PLN into a target for the phosphoadaptor protein 14-3-3 with different affinities. 14-3-3 proteins were localized within nanometers of PLN and endogenous 14-3-3 coimmunoprecipitated with pentameric PLN from cardiac membranes. Molecular dynamics simulations predicted different molecular contacts for peptides phosphorylated at Ser16 or Thr17 with the binding groove of 14-3-3, resulting in varied binding affinities. 14-3-3 binding protected either PLN phosphosite from dephosphorylation. β-Adrenergic stimulation of isolated adult cardiomyocytes resulted in the membrane recruitment of endogenous 14-3-3. The exogenous addition of 14-3-3 to β-adrenergic-stimulated cardiomyocytes led to prolonged SERCA activation, presumably because 14-3-3 protected PLN pentamers from dephosphorylation. Phosphorylation of Ser16 was disrupted by the cardiomyopathy-associated ∆Arg14 mutation, implying that phosphorylation of Thr17 by CaMKII may become crucial for 14-3-3 recruitment to ∆Arg14 PLN. Consistent with PLN acting as a dynamic hub in the control of Ca2+ handling, our results identify 14-3-3 binding to PLN as a contractility-augmenting mechanism
    corecore